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Nomenclature
a - radius of the cylinder which is transformed into a cascade
[a] - influence coefficient matrix
A,k - the normal component of velocity induced at the midpoint of
J element j by the source distribution on element k of constant
unit strength
' A!k - the normal component of velocity induced at the midpoint of
J element j by a distribution of constant unit strength vortices
on element k
- AN
A(q,s) - V(q,s) * n(s)
c - chord of the airfoils
CF - force coefficient in nondimensionalized form defined by Eq. 47
X
CF - force coefficient in nondimensionalized form defined by Eq. 48
y
CL - the total lift coefficient defined by Eq. 45
1]
CM -~ moment coefficient defined by Eq. 49
Cp - pressure coefficient defined by Eq. 43 1
d - distance to the point where the cylinder intersects the x axis
in the S plane for the exact cascade flow solution
E - source and sink strength in the exact cascade flow solution
FL - sum of the lift forces for one airfoil of each cascade
Fr - force on the airfoil in the r direction 1
Fe - force on the airfoil in the 6 direction 3
Fx ~ force on the airfoil in the global x direction #
Fy - force on the airfoil in the global y direction
" G - vortex strength at A' and A" in the exact cascade flow solution
{
H - vortex strength at B' and B" in the exact cascade flow solution ;
Kl - =-E + iG .
Ei - complex conjugate of Kl ’
K2 - E - 1iG
EZ -~ complex conjugate of K2
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Nomenclature (Cont'd)

moment about a point specified in the input
number of equations or elements

number of cascades with circulation

indices of the first and last elements of the
airfoils in the m cascade

unit vector normal to the surface at point S
onset flow matrix
local static pressure
reference static pressure
total pressure, constant throughout the potential flow field
volume flow rate
a reference radius specified by input to the cascade program
complex coordinate in the S-plane
the circumference of an airfoil in cascade m
dimensionless cascade spacing
magnitude of the average velocity vector
velocity vector
U for linear cascades, Vr . for circular cascades
re

the onset flow

velocity at point s due to an infinite array of unit sources
at point q on the bodies

downwash velocity
local velocity
upwash velocity

cascade m's violation of the Kutta condition for 0 degree
onset flow
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Nomenclature (Cont'd)
! AV90m - cascade m's violation of the Kutta condition for the 90 degrees
' onset flow
s Avm,n - cascade m's violation of the Kutta condition for the onset
: flow created by the circulation on cascade n
i W - the width of the radial channel
F W(S) - complex velocity in the S-plane
E: w(z) - complex velocity in the Z-plane
wW(T) - complex velocity in the T-plane
T zj - the complex coordinate of the midpoint of element j
z(s) - complex coordinate at point s = x + iy
z(q) - complex coordinate at point q = 7 + in
o(q) - source strength at point q
ar - idinlet flow angle
Ao ~ the angle the flow is turned through the cascade
o - the mean flow angle ,
op - exit flow angle
[o] - source distribution matrix
] - stream function

T ~ the circulation on an airfoil in cascade m
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I. INTRODUCTION

The original Douglas Neumann Cascade Program, documented in a report
by Joseph P. Geising [1]*, solves an approximate potential solution
for the flow through two-dimensional linear cascades. This approximate
solution approaches the exact solution as the number of points describing
the body surface approaches infinity. The original program can handle
one or more cascades, the bodies can be of any arbitrary geometry, and
the bodies can be lifting or nonlifting.

The Applied Research Laboratory of The Pennsylvania State University
modified the Douglas Neumann program so that flow inward through a single
radial flow or circular cascade could be analyzed. This modified program was
developed under sponsorship by the U.S. Bureau of Reclamation to enable the
flow through wicket gates of a hydraulic turbine to be analyzed [2]. A con-
formal transformation was incorporated into the program which transformed the
circular cascade into a linear cascade. The transformed cascade could then be
analyzed in the conventional manner and the solution then transformed
back to the real plane. In Reference [2], average downstream flow angles
calculated with the modified program are compared to experimental values
obtained in an air test facility. The agreement between the experimental
and calculated flow angles is found to be quite good.

When the work of [2] was performed, much of the flexibility of the
original Douglas Neumann Cascade program was lost, and also, both linear
and circular cascades could not be analyzed with a single program. This
report documents a rewritten versiou of the Douglas Neumann program which
can handle both linear and circular cascades, multiple cascades of both

types can be analyzed, and the input parameters which define the flow

*Numbers in brackets refer to refercnces at the end of the report.
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conditions through the cascades can be of several different types as in
the original program. In addition, the new program can analyze circular
cascades with the radial flow direction inward or outward. Thus, for -
example, the flow through stay vanes and wicket gates of a pump-turbine
can be analyzed in both the pump and turbine mode.
With the many different types of problems to be handled by a
single program, it was thought that the program would be more orderly
if it was rewritten following the original technique, rather than
inserting a lot of new sections into the old program. The program is
now structured so that data are read in, manipulated, calculations
are performed etc. in progressive steps through the program. There are
numerous sections of the program which will not apply to a particular
problem, thus the program skips these sections and continues on with
the next section which applies. The program does not double back over i
itself, except in small iteration loops, and, thus, the logic should be
easy to follow. The functions of the various sections of the new program
are also documented with comment statements throughout the program.
In the Douglas Neumann Cascade program, the flow can be analyzed
at points off the body in addition to obtaining the flow on the body
surface and the overall cascade performance. In many circumstances it
may be desirable to analyze a large number of off-body points which are
systematically spaced through the cascades. The rewritten version of the
program will generate off-body point coordinates given an initial set of
{ coordinates and the desired spacing. In the new version, the off-body .
point coordinates are also stored in arrays separate from the body
coordinates so that the number of off-body points need not be considered

. when selecting the number of points to represent the airfoils., Two
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large arrays have been specified for storing off-body point coordinates
and the separate storage makes changing the dimensions of the arrays an !
easy task, if it becomes necessary.

The use of auxiliary and core storage has also been greatly modified {
in the new version of the program. The original Douglas Neumann program
used tapes to store data and transfer the data from subroutine to subroutine.
This was probably done so that only one subroutine needed to be in the
core at one time, and thus the program could be run on smaller computers,
With today's larger computers, COMMON storage can be used for transferring
data between subroutines, and the repetitious reading of data from auxiliary
storage eliminated. Auxiliary storage is currently only used to store
the original body coordinates and the very large matrices representing ]
the system of equations which are solved simultaneously.

For very large problems, the matrix representing the system of
equations to be solved is too large to fit in the core of most computers.

The original Douglas Neumann program utilized an iterative technique and
auxiliary storage to solve the equations for large problems. The iterative
approach required reading the equations from a file for each iteration. Since
reading of disc files is time consuming, a new procedure for solving the
equations was developed during the current rewriting of the program. Both

the new procedure and the iterative procedure are available with the rewritten
version of the program. The new procedure was shown in a sample run to signifi-
cantly reduce the computation time.

Thus far, this introduction has given a general description of the
background and development of the cascade program. The major changes made

in the rewritten version of the Douglas Neumann cascade program have also

been briefly described. 1In the remainder of this report, the theory used
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in the program, a description of the program and the input and output
parameters, and several check cases will be presented. A users guide
giving detailed instructions for running the program and a sample run
can be found in Appendix A. Appendix B discusses the data storage and
solution procedures, and Appendix C describes the coordinate data input

order and the necessary reordering performed in the program.

ITI. THEORY

2.1 Basic Equations

The basic concept of the Douglas Neumann cascade program is to apply
a distribution of sources on the surface of the bodies such that the
combination of the source distribution and the onset flow satisfy the
boundary condition on the blade surface. For the usual condition of no
flow normal to the surface, the following equation should be satisfied

everywhere on the blade surface:

- Y
-V_ *T(s) = J 0(q) A(q,s) dq @D)
body
where
=
V°° = the onset flow
- .
n(s) = unit vector normal to the surface at point s

0(q) = source strength at point q
-3 =
A(q,s) = V(q,s) * n(s)
V(q,s) = velocity at point s due to an infinite array of unit sources
at point q on the bodies.
A
An expression for V(q,s) can be obtained by starting with the equation

LS
for the velocity at a point due to a single source and writing V(q,s)

as an infinite sum of the velocities induced by an infinite array of




-13- 26 June 1981
AMY: cag

sources. The infinite sum can then be eliminated by manipulating the
equation and introducing the hyperbolic functions. The following equation

S
is obtained for V(q,s):

- _ . | Ll
V(q,s)Source =V, - 1Vy = Eg;-coth 5 [z(s) - z(q)] (2)

where
z(s) = complex coordinate at point s = x + iy
z(q) = complex coordinate at point q = £ + in
The expression for the velocity induced by an infinite array of vortices

is the same as Equation (2), but with the velocity vector rotated 90°.

- . 1 m
V(q,S)Vortex = 1 555 coth § =5 [z(s) - z(q)] (3)

The technique employed in the Douglas Neumann program to solve

Equation (1) is to; (1) break the surface of the bodies into small segments

or elements, (2) approximate the source distribution as a constant on each i

element, and (3) satisfy the boundary condition only at the element midpoint.

With these approximations, Equation (1) can be written as:

- - N

wj Py T kzl 0y I A;(a) d(q) (4)
element k

As seen in Equation (4), the independent variable s has been eliminated,
because Equatjion (4) is evaluated only at the midpoints of the elements.

Thus, A(q,s) becomes Aj(q) and can be written as:
- -_ 1 T -~
Aj(Q) = Vj(Q) c 0y - [ng coth {EF [Zj ~ C(Q)]}] . 0, (5)

where

zj = the complex coordinate of the midpoint of element j.
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The integral in Equation (4) can be evaluated by expressing the surface
coordinate q in terms of the global coordinates of the body in the cascade.

With the aid of Figure 1 we find that:

i} . } 18,
t(q) = (€, + 1 n) + q(cos Bk + i sin Bk) = Cok + qe (6)
Equation (6) can then be differentiated to yield an expression for dq,
which is needed to perform the integration.
dq = dze Pk 7)

Substituting Equations (5) and (7) into the integral and expressing the
integration limits as the end points of element k as defined in Figure 1

yields: c

2
k
=, 1 _m - -1f
Aj(q) dq = nj J 75P coth [SP (zj z)] dz e . (8)

element k c
I

Carrying out the integration in Equation (8), provides an expression for

Ajk’ the normal velocity induced at the midpoint of element j due to the

source distribution on element k of constant unit strength.

, i1
( e—in sinh P (z, - Clk) s
= = J .
AJ.k z J AJ. (q) dq on 1n = ny (9

element k sinh Sp (zj - Czk)

Substituting Ajk

basic equation used in the Douglas Neumann program.

as defined in Equation (9) into Equation (4) yields the

g -

A,, o ==V ., *n 10
LAk T ey Ty (0
Equation (10) is the approximate form of Equation (1) and it must be

satisfied for each element of the cascades. Equation (10) can be written

for each element yielding the following matrix equation:

R ¥ -
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Figure 1. A Typical Straight Line Element of the Body Surface
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EN i oo

The set of equations represented by Equation (11) are solved simultaneously
in the Douglas Neumann program for the unknown source strength of each element.
As seen by examining Equation (9), the terms of the A matrix are only functions
of element coordinates and, thus, can be calculated from the cascade geometries
which are input to the program. The onset flows, appearing in the matrix on
the right hand side of Equation (11), will be discussed in the following
section.

2.2 Basic Solutions and Combination Equations

Equation (11) can be solved for any given onset flow V_. However,
for airfoils in a cascade, an addition boundary condition, must also be
satisfied. Circulation, which arises around the airfoils, enables the
Kutta condition to be met. For cascades, this circulation induces an
upwash and downwash velocity far upstream and downstream, respectively,
relative to the mean cascade velocity. These induced velocities are
illustrated in Figure 2. Both the circulation and the mean velocity must
be accounted for in Equation (11). However, for the typical cascade
problem, the magnitude of the circulation is usually unknown and the mean
flow angle may not be given. The operating parameter which may be given
for a cascade analysis will be either:

1. aI, the inlet flow angle

2. Ao, the angle the flow is turned through the cascade = a, - a
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3. a, the mean flow angle

or 4., C the total lift coefficient of all the cascades.

L’

The angles Ors @ and a_ are shown in Figure 2.

E

In the Douglas Neumann program, several basic solutions are calculated,
each of which satisfy the condition of zero velocity normal to the body
surfaces. Since the governing equation is linear, any number of solutions
can be scaled and added without violating the governing equation or the
surface boundary condition. The technique employed by the Douglas Neumann
program is to combine the basic solutions such that the cascade operating
parameter and Kutta condition are satisfied.

The basic solutions which are used are calculated for each of the
following onset flows:

1. A uniform flow normal to the cascade(s), i.e., a =0

2. A uniform flow parallel to the cascade(s), i.e., a = 90°

3. A ponuniform flow created by the circulation on the

airfoils of cascade 1.
4. A nonuniform flow, like flow 3, for each additional cascade
with circulation.
- N

The terms —ij . nj in Equation (11) for onset flows 1 and 2 are
simply sin(Bj) and —cos(Bj), where B is the angle of the element as
previously illustrated in Figure 1. For the nonuniform onset flows,
the effects of all the elements of an airfoil in one cascade on a particular
element must be summed to obtain :he velocity induced by the circulation.
Since the only difference in the velocity induced by a vortex or a source
distribution is that the velocity vector is rotated 90 degrees, the calcula-
tion performed in the program to evaluate Equation (9) can also be used to

calculate the onset flows created by the circulation of the different
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cascades. The normal component of the onset flow for element j, due

to circulation on the airfoils in cascade m can be written as:

' n
'?mj '—n\‘j =5 22 Al (12)
m k-—n1
where Fm = the circulation on cascade n
Sm = the circumference of an airfoil in cascade m
Agk = the normal component of the velocity induced at the midpoint
of element j by a distribution of constant unit strength
vortices on element k. (Since the dot produce in Equation (9)
is performed by complex number multiplication, Aik is obtained
from the real part of the resulting number while Ajk is the
imaginary part.)
n; and n, = the indices of the first and last elements of the airfoils

in the m cascade.

The value of Fm in Equation (12) is unknown at the time the basic
solutions are calculated. Thus, the basic solutions for the onset flows
due to circulation are obtained with Fm = 1, The real magnitude of Fm
is determined when the basic solutions are combined to satisfy the Kutta
condition.

Under most circumstances, the Kutta condition is violated by each
of the basic solutions. An approximate measure of the amount each solution
violates the Kutta condition can be obtained by computing the difference in
the tangential velocity above and below the trailing edge (i.e. at the
midpoint of the first and last element of each cascade). The basic
solutions must be combined such that the cascade operating parameter

is met and the combined violations of the Kutta condition are zero. The

ST T T

_ — ,,____A — i
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evaluating the unknown values of Fm.

AVOl U cos a + AV90

AVO2 U cos a + AV902 U sin o + AV21Fl + AV, T, + ...

AVONc

where:

AVO
m

AV90
m

If o is the given cascade operating parameter, Equation (14) can be
solved for the unknown values of Fm'
rewritten in matrix form, Equation (14), which can then be solved by

matrix reduction. TFor the usual case of one cascade, the solution is

trivial.

U cos a + AV90NC U sina + A

]
o

U sin o + AVllF + AV 2F2 + ...

1 1 1

[l
o

2272

Ve, 171 T AV, 2"2

cascade m's violation of the Kutta condition for
0 degree onset flow.
cascade m's violation of the Kutta condition for
90 degree onset flow.
cascade m's violation of the Kutta condition for
onset flow created by the circulation on cascade

number of cascades with circulation.

tan G.I + tan

the

the

the

cascade average flow angle = tan 3

For this case, Equation (13) is

(13)
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- p— = —

AVll Avlz ere AVl,NC Pl AVO1 cos o + AV901 sin o

AV21 AV22 . AVZ,NC PZ AVO2 cos o + AV9O2 sin o

. =_U (14)

AVNC,I AVNC,Z e AVNC,NC EFC L?VONC cos o + AV9ONC sin fl
L ] ]

For the cases when o is not the given operating parameter, Equation (14)
cannot be used directly tc solve for the Pm's; because, explicit relations
do not exist between ¢ and Ops CL’ or Ao. When O is the given input
parameter, a matrix equation which contains the additional unknown a is
solved. For the other cases when CL or Ao are given, the program must
iterate to obtain the additional unknown a.

To obtain the matrix equation which contains & as an unknown and
o, as a known parameter, an additional equation is required. By examining

the inlet velocity triangle in Figure 2, the following equation can be

obtained:

U cos a tan o - U sin a = Vup (15)

The upwash velocity, Vup’ in Equation (15) is unknown. However, since
Vup is the induced velocity due to the circulation on the airfoils, it
is known that Zrm = 2S5P Vup' The upwash velocity can therefore be

eliminated from Equation (15) and after rearranging it yields the following:

I =
tan o + [I‘l/U cos a + F2/U COS O ... FNCﬂ' cos a]/2SP = tan ag (16)

Modifying Equation (14) algebraically and inserting Equation (16)
provides the necessary matrix equation which can be solved for o and the

Fm's for a given o

I
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UAV90l Avll AV12 AVl,NC tan o —UAVOl
UAV9O2 AV21 AV22 .o AVZ,NC Tl/U cos 0O —UAVO2
. . . . = . (17)
1 1 1
1 55p 5P 5sp FNC/U cos O tan OLI

If Ax or C, are given as the input parameters, the program will

L

iterate using an assumed value of o in Equation (14), until the o is

found which yields the given Aa or C

L

equations are:

and

tan Aa =

L’

Therefore, equati

.,
1- [zsp I T,
m=1

Equation (18) is derived from the definition of C_ and th

L

relationship between circulation and the lifting force.

can be derived by writing tan Ao as tan(uI - aE), expanding tan(a

into an equation with tan a

triangle to express tan a

I

I and tan aE

» and then using t

ons which relate

C. and Aa to the I&'s found for a particular o are required. These

(18)
19)
e basic
Equation (19)
Y

he velocity

and tan aF in terms of Fm’ sin a and cos «a.
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2.3 Transformation of Circular Cascades

Up to this point, the analysis has dealt with linear infinite cascades,
and is applicable to the blade sections of axial flow machines. For radial
flow machines, it is also desirable to be able to analyze inlet guide
vanes of turbines and diffuser vanes of pumps and compressors. In the
preceding analysis, linear cascades are handled by the concept that
Equations (2) and (3) were derived for the velocities induced by infinite
arrays of sources and vortices of constant spacing SP. The flow field
thus repeats every spacing SP and satisfying boundary conditions on one
airfoil of a cascade automatically satisfies the boundary conditions on
all the airfoils of that cascade.

A circular cascade can also be considered an infinite cascade;
because we can continually observe points around the cascade, and if
all the vanes are identical the flow pattern repeats after each vane.

If all the vanes are different, the vanes can be considered as several
infinite cascades with the flow pattern repeating after each revolution.

Rather than deriving equations similar to Equations (2) and (3) for
circular cascades, the approach taken was to mathematically transform
the circular cascades into linear cascades and then use the existing
analysis. Since the flow is being analyzed using potential theory, a
conformal transformation can be used and the same governing equations
and boundary conditions will apply in both the real and transformed
planes. The transformation used, is performed by the following equations

and is illustrated in Figure 3:

y =29 (20)

x =1lnr (21)
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Figure 3. Schematic of a Circular Cascade (Above) Which is
b . Transformed into the Linear Cascade (Below)
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In addition to the equations for transforming the circular cascade
geometry into a linear cascade, relationships are also required for
relating the velocities in the two planes. From the velocities, the
pressure field can then be calculated. The necessary relationships can

be derived by first defining a stream function ¥ in the r-0 plane such

that:
=13y
Ve = T 30 (22)
and
L]
Vo = 7 37 (23)

It is also necessary to define the stream function in the x-y plane such

that:
3y
VX 3y (24)
——l")
Vy = % (25)
From the chain rule we know that
3 _ 3% 3y
a6 9y 36 (26)
and
3% _ 3% 3x
dr ~ ¥x or 27
. s . . 3y _
Differentiating Equations (20) and (21) we find that YO 1 and
%% = %. Substituting these relations and Equations (22) through (25)
into Equations (26) and (27) yields the desired relationship between
the velocity components in the real and transformed planes.
-_l_v 2
Vr =7 v, (28)
Y—_l_i
\0 = \‘ (29)
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By combining the velocity components into the resultant velocity a similar

equation relating the resultant velocities is obtained:

1

i

22 fio 2, 1 2_;\/2 2 1 !
v -\/vr+ve -\/(r R A - (30)

3 IIT. PROGRAM DESCRIPTION

» The purpose of this section is to describe the key parameters and
variables found in the program input and output, discuss the types of

cascades which can be analyzed, and explain the structure of the program

itself. The input format required to run the program is not presented
in this section, but is presented in the users guide in Appendix A.

In part one of this section, the program parameters and variables are
defined and their application to the different types of cascades are
discussed. The parameters used to nondimensionalize the data are also
described. In part two, the restrictions which apply to the three basic
types of cascades are presented, and ways for circumventing these
restrictions to enable some unusual cascade geometries to be analyzed
are explained. 1In the final part of this section, the structure of the
program and the functions of each of the major subroutines are described.

3.1 Definition of Key Input and Qutput Variables

A convenient place to start the discussion of input and output
variables is with the angles which describe the flow and the orienta-
tion of the airfoils in the cascades. The flow angles and the stagger
angle ¢ for a linear cascade are illustrated in Figure 2. In terms

of the velocity components, the inlet angle a_ and the exit angle a

I E

can be defined as:




e IO L j
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(VY \
_ -1 I
@, = tan lv——j (31)
X
Vy
i _ -1 E
1 ap = tan k;—J (32)
- b
é For a circular cascade, the definitions are similar with the x and y

components of velocity replaced by the r and 6 components, respectively.
Thus, for a circular cascade with the radial flow direction inward or

outward, the inlet and exit flow angles are defined as:

\Y

can-1 | °1) 133

= tan —_—
a ¥ (33)

I

-1 VeE\

=t —
aE an [V J (34)

'E

Equations (31) through (34) yield the sign which is consistent with the
chosen convention. All flow angles for both linear and circular cascades
are positive in the counterclockwise direction. The stagger angle for
circular cascades is also measured in a counterclockwise direction, while
the stagger angle for linear cascades is the only angle measured in a

clockwise direction. The opposite sign convention was chosen for the

linear cascade stagger angle to be consistent with the original Douglas
Neumann program. For a typical cascade configuration as in Figure 2,
the chosen convention also yields a positive lift corresponding to a
positive stagger angle when the cascade is subjected to an axial inlet
flow.

Two other angles which are sometimes used as input to the Douglas

Neumann program are the flow turning angle Aa and the cascade mean flow

angle a. These angles are defined as follows:




F
F.
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Ao = ar = ap (35)

o =

(36)

-1 [tan aI + tan aE]
tan 5

Tan aI and tan aE in Equation (36) can be expressed in terms of the x and

y velocity components for a linear cascade. Making these substitutions
would show that a is the angle of the average velocity vector through the
cascades, and thus a has physical significance for linear cascades. For
circular cascades, the physical significance of a is not as clear. Since
the magnitudes of the inlet and exit velocities for circular cascades
depend on the radius, no unique average velocity can be defined without
specifying the radii. The inlet and exit velocities can each be converted
to equivalent velocities at a common radius by applying conservation of
mass (rVr = constant) and conservation of angular momentum (rVe = constant).

The angle of the average of these equivalent velocities is a. At the

common radius Vy 1is equal to Vyes just as Vy 1is equal to Vi for a
I E I

linear cascade.

The angles a, aI, aE and Ao describe the overall characteristics
of the flow through the cascade. However, the bulk of the output from
the program is the velocity and pressure on the airfoil surfaces and at
specified off-body points in the flow field. The velocities and pressures
are both presented in nondimensional form, thus, the normalizing velocity
for the various types of cascades should be discussed. For linear cascades,
the magnitude U of the average velocity vector Vav is used for non-
dimensionalizing velocity and pressure. The vector Va is illustrated

Ve

in Figure 2., From the figure it can be seen that:
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Vx cos aI cos aE
v= cos o = VI cos o = VE cos o (37)

For a circular cascade, an average velocity vector is difficult to

define, therefore, a normalizing velocity with more physical significance
was selected. With uniform flow, the volume flow rate Q for a radial

flow system is Vr 21 rW. Even though the flow is not uniform through a
cascade, the relationship for Q can be used to define a meaningful reference

velocity by first writing:

Vrr = Q/2mW = constant (38)

Since Vrr is equal to a constant, selecting a reference radius provides
a reference velocity which can be used to nondimensionalize the data for

circular cascades. The quantity, W, is the width of the radial channel.

1 Q _ constant

rref 2TW r

Vr =
ref

(39)
ref

The value LI is given as input to the program and was selected as the
radius which positions the airfoils in a cascade. The users guide in

Appendix A will further illustrate Toof
Equation (39) defines the reference velocity for a circular cascade,

but it is recalled that the flow field solution 1is originally obtained

in a transformed plane where the reference velocity is U. A relationship

between U in the transformed plane and V. is therefore required in the
ref
| program. Substituting Toof for r and v, for V_ in Equation (28) yields:
ref
1
v = N (40)
Tref Tref *
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From Equation (37) it is known that Vx = U cos a, thus:

U cos o (41)

Equation (30), which transforms a velocity in the x-y plane to a velocity

in the r-6 plane, can now be written in nondimensional form as:

Vre rref ny

\Y T or U cos a
T
ref

(42)

Equations similar to Equation (42) can be written for the velocity

components Vr and Ve by dividing Equations (28) and (29) by Equation (41).
All velocities in the output of the current version of the Douglas

Neumann program are nondimensionalized by V and U for circular or

linear cascades, respectively. The pressure:ezn the body surfaces and

at off-body points are also nondimensionalized by Vr and U, The

ref
pressure coefficient Cp is defined as:

v 2 P -
c =1 - L _ s s ref (43)
P ref l-p V2
2 ref
where V = U for linear cascades
ref
\ =V for circular cascades
ref r

ref

As seen from Equation (43), the pressure coefficient can be calculated
from the local velocity VR at the point under consideration, but Cp also
represents the difference between the local static pressure and a

reference static pressure PS The reference static pressure is

ref’

defined as follows:

1
Pp - E-p vref (44)
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where V Uor Vv
re r
ref

total pressure, which is constant throughout the potential

Ja}
1l

flow field
The remaining parameters to be defined again involve overall cascade
properties rather than local pressures or velocities. For linear cascades,

a lift coefficient CL’ x and y force coefficients C and CF , and a

X y
moment coefficient CM need to be defined. The lift coefficient C

F

L

represents the total 1lift of all the cascades; and if it is not an
input parameter, the program calculates CL from the total circulation
of the one or more cascades. If only one cascade is being analyzed,
CL is printed at the beginning of each page along with the other

coefficients. However, for a multi-cascade analysis, C. 1s printed at

L
the end of the output of all the cascades so that it is not interpreted
as the lift coefficient of a particular cascade.

The circulation on a cascade induces an upwash and downwash on
the flow relative to the average flow through the cascade. For this
reason, the lift force is perpendicular to the average velocity vector
Vavg' CL is defined by the following equation and is calculated in the

program by the subsequent equation:

F
- L
CL=13 (45)
pU cW
2
where F. = sum of the lift forces for one airfoil of each cascade.

L

FL is perpendicular to Vavg

¢ = chord = 1

W = span, (W = 1 so that C_ represents the lift per unit span)

L
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2 NC
CL = Te z Pm (46)
m=1

where Fm circulation on an airfoil in cascade m

NC number of cascades

[}

chord = 1

[

The coefficients C C and CM are obtained in a different manner

F’F

X y
than CL’ because they are computed by integrating the pressure distributions
around the airfoils. For a multicascade analysis, coefficients are computed

for each cascade. CF and CF nondimensionally represent the forces on

X y
the airfoils in the x and y directions, respectively, in the cascade global

coordinate system. The moment represented by CM is computed about a point

specified in the input. These coefficients are defined as:

c, = U (47)
Fx %pUch
F
Cp =T 5 (48)
y EpU cW
-0 (49)
qﬂ %DUZCZW
where Fx = force on the airfoil in the global x direction
Fy = force on the airfoil in the global y direction
M = moment about a point specified in the input (a positive
moment is counterclockwise)
¢ = chord of the airfoils in the cascade for which the

coefficients are calculated

Chm e ey ———r
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CL is related to CF and CF through the mean flow angle a. 1If
X

there is more than one cascade, the force coefficients can be summed

and used to compute C

Lt
NC NC
CL = Z Cp ¢c cos a - z Cyp c sin o (50)
m=1 Ym m=1 *Xm

Equation (50) is not used in the program, but it is provided to explain

the relationship between CFx’ CFy and C If CL is hand calcusiated from

L
Equation (50), the resulting value should only differ from the computer

value by the small error incurred when integrating the pressure distributions
for CFx and pr. The chord ¢ is required in Equation (50) for multiple
cascade analyses where all the airfoils may not have c=1.

For circular cascades, C. is not computed because an average

L

velocity vector is not easily defined and C. would have little meaning.

L

Two force coefficients and a moment coefficient are computed for each
circular cascade by integrating the pressure distributions. The following
equations define these coefficients and complete the definition and

discussion of the input and output variables.

pE=
-

F

= — Y
CF 0 7 (51)
r = pV cW
2 r
ref
Fe l-pvz cW
2 T
ref
m
c, = T (53)
M 1 2
5 er c2W

ref
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where Fr = force on the airfoil in the r direction
FB = force on the airfoil in the 6 direction

M = moment about a point specified in the input (a positive

moment is counterclockwise

3.2 Cascade Modeling

There are three basic types of cascades which the current version of
the Douglas Neumann cascade program can handle. The program can analyze
linear cascades, circular cascades with the radial flow inward, and
circular cascades with the radial flow outward. In addition to single
cascade analyses, multiple cascades can be analyzed as a system. For
each of the various types of cascade analyses, the following restrictions
apply to the cascades:

1. All the bodies of a particular cascade must be equally spaced.

2. All the bodies of a particular cascade must be identical.

3. For an analysis with multiple cascades, all the cascades must

have the same spacing between the bodies.

4. No cascade can move relative to another cascade.

The last restriction is the only restriction which cannot be overcome
through cascade modeling. Under no circumstance can a cascade move
relative to another cascade because this would constitute an unsteady
flow field.

For simple cascade geometries, no modeling is involved in the program
input. The user simply inputs to the program the airfoil geometry and
cascade parameters such as spacing, stagger angle, inlet flow angle,
etc. However, for unusual cascade geometries where one of the first

three restrictions is violated, a cascade can often be modeled as several

cascades to overcome the restrictions.
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Two examples will be used to illustrate cascade modeling. For the
first example, the cascade of circular cylinders shown in Figure 4 has
unequal spacing between the cylinders and thus violates the first
restriction. 1In this case, although the distances from one cylinder

to the next cylinders above and below are not equal, it is seen that the

cascade pattern repeats every spacing SP. The single cascade of unequally
spaced cylinders can thus be modeled as two cascades. Both cascades will
have the same spacing between the cylinders, with the second cascade
offset from the first cascade by the distance ADDY shown in the figure.
The numbers on the cylinders in Figure 4 identify the cylinders belonging
to the two cascades.

Although in the first example the cylinders of cascade one and two
have the same diameter, the two cascades could have different size or
differently shaped bodies. Thus, the same procedure can be used to
model cascades with bodies of different geometries. The process of
representing differently shaped bodies or equally spaced bodies as different
cascades could be carried to an extreme where a random cluster of differently
shaped two-dimensional objects could be analyzed. Each object could be
represented as a cascade, and the spacing could be made very large such
that the effect of other members of the same cascade would be regligible.
This extreme situation may require a very large number of points to represent
the different body geometries and, thus, may not be practical. However,
the extreme case does illustrate the flexibility of the program made
available by the ability of the program to analyze multiple cascades.
It should be possible to model most cascades of engineering significance

with a reasonably number of cascades which will not violate any of the

program restrictions.
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i
FLOW DIRECTION _ Y

THE UNEQUAL SPACINGS VIOLATE
A PROGRAM RESTRICTION IF THE
CYLINDERS ARE CONSIDERED ONE
CASCADE

Figure 4. Tllustration of How a Cascade of Cylinders With Unequal
Spacing Can be Modeled as Two Cascades of Equal Spacing S,
Offset by the Distance ADDY

I
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The second example of cascade modeling illustrates an analysis of
a cascade with apparently differently shaped airfoils. Figure 5
is a schematic of stay vanes and wicket gates of a hydraulic turbine.
It is noticed from the figure that the stay vanes have five different
geometries. Over most of the circumference the stay vane geometry
is constant with either stay vane A or stay vane B being employed. In
the regions where the stay vane geometry does not vary, the flow can
easily be analyzed with the current version of the Douglas Neumann
program. The wicket geometry and the appropriate stay vane geometry
are input to the program, neglecting the other stay vane geometries
which are remote from the area of interest.

Neglecting the variation of the stay vane geometry, the wicket
gates and stay vanes represent two cascades which do not violate any
of the program restrictions. Suppose, however, that it is desirable
to analyze the flow in the region of stay vane D, where it is seen
from Figure 5 that there are five different stay vane geometriecs side
by side. Since there is no symmetry in the distribution of stay vane
geometries, to analyze the entire flow field including the five different
stay vane geometries would require 48 cascades. Each wicket gate and
stay vane would need to be represented as a separate cascade with the
spacing SP=360°. The number of points required to represent 48 cascades
certainly makes this approach unrealistic.

A more realistic approach to analyze the flow near vane D is to
only consider the two vanes on both sides of vane D, and after these
vanes allow the pattern to repeat. In this way, the effects of the two

nearest vanes in both directions is included, but the effects of the true

vane shapes beyond the first two vanes are neglected in the model. This
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28 WICKET
GATES

24 STAY VANES

— -

Figure 5. Wicket Gates and Stay Vanes of a Hydraulic Turbine
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approach is illustrated in Figure 6. In order that the wicket gate

spacing be the same as the stay vane spacing, the wicket gates corresponding
to the five stay vanes must also be modeled as different cascades. The

need to represent the wicket gates as five cascades, even though they

have the same geometry, is also apparent from the fact that they are

each downstream of a different stay vane geometry and will each have a
different flow solution. The flow in the region of stay vane D can
therefore be modeled with ten cascades, the maximum number the program is
currently set up to handle.

In Figure 6 the ten cascades representing the wicket gates and stay
vanes near vane D are numbered to identify the members of the various
cascades. The original vane shapes are also identified by the letters.

It is seen that each cascade has the same spacing SP and after the spacing
SP the pattern repeats. The relative position of the various cascades is
ADDY

specified by the radius and the angles ADDY etc.

1’ 2’

It is important to remember when modeling different vane shapes,
as in the preceding example, that the vane of primary concern should be
kept in the middle of the group. This will minimize errors caused by
not having the true vane shape a few vanes from the place of concern.
For example, the model shown in Figure 6 should not be used to analyze
the flow near vane C, but instead, a new model with two true vanes on

both sides of vane C should be employed.

Note: A circular cascade becomes an infinite linear cascade in the
transformed plane because each succeeding revolution around the circular
cascade will generate more of the same airfoils. TIn the example where

there were 24 stay vanes, the true pattern would repeat every 24 vanes.

However, the stay vanes were modeled as 5 cascades which cannot be evenly

a_—




T u:-vuﬂsﬁf‘ﬂ“

26 June 1981
AMY:cag

5 o

K
4

3 s~ Y

% =0 >

‘ 9

AN

Figure 6. TIllustration of One Pussible Way to Model the Wicket
Gates and Stav Vanes in the Region of Stay Vane D
of Figure 5
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divided into 24. Therefore, the pattern will not repeat every 24 vanes
as it should. This fact may be somewhat disturbing because transforming
the linear cascade back to the circular cascade will result in several

different vane shapes occupying the same location. In the transformed

plane, where the flow field solution is originally obtained, the airfoils
which will occupy the same location in the real plane are 24 vanes apart.
Thus, they have essentially no effect on each other, and the fact that

the pattern does not repeat every 24 vanes is inconsequential. The
author has not verified this conclusion with computer runs of the program,
therefore, it may be wise for the user to do so if the number of cascades
used in modeling a circular cascade cannot be divided evenly into the
total number of vanes. |

3.3 Structure of the Program

The current version of the Douglas Neumann cascade program consists
of a main program and five major subroutines. The main program's only
function is to call the appropriate major subroutines. Each of the major
subroutines will be described in the following paragraphs. Besides the
CALL statements for the subroutines, the main program also contains two
logical IF statements. One IF statement selects SUBROUTINE PART3 or
SUBROUTINE PART4 for solving the set of simultaneous equations depending
on the size of the problem. The other IF statement directs the program
to go to SUBROUTTNE PART5 following SUBROUTINE PART1 for cases where the
basic solutions of the previous case can be used for the present case. The
main program will continue to process cases until an input code directs the
program to be terminated. If cases of similar geometry are run where
only the flow angle or lift coefficient is changed, the same basic

solutions can be used for each case, Subsequent to the first solution

| 3 'I
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when the basic solutions are obtained, the program only needs to solve

the combination equations. This feature will save a considerable amount

of computation time when several solutions with the same cascade geometry v
but different flow conditions are required:

SUBROUTINE PARTI1:

The major purpose of SUBROUTINI' PART1 is to read the input data
and do any of the preliminary calculations which are necessary before
the set of simultaneous equations can be set up and solved. One of
the first cards to be read is a control card specifying the tvpe of
cascade and giving other run control information. Cascade parameters
are read next, followed by the airfoil coordinate data. The airfoil
coordinate data is usually read from cards. However, if the airfoil
geometry is the same as the previous case, the data can be read from
a file. For runs where a particular airfoil geometry is repeated for
modeling purposes, as in the stay vane - wicket gate example in the preceding
subsection, SUBROUTINE PART1 will generate the airfoil coordinate data
for the similar airfoils following the input of the first airfoil data.
After the coordinate data have been input, the data are stored in a file
before the required maniuplations begin.

For circular cascades, SUBROUTINE PART1l reorders the coordinate
data so that in the transformed plane the data will have the same order
as data for linear cascades. The necessity of reordering the data is
described in more detail in Appendix C. For circular cascades with the
radial flow direction inward, the coordinate data are put in reverse
order. If the radial flow direction is outward, the starting point of

the data is shifted to the trailing edge of the airfoil for the current

flow direction.
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SUBROUTINE PART1 next scales the coordinate data by the value of

the chord given for each cascade. The coordinate data are then converted
from local to global coordinates, which involves translating and rotating
the coordinates so the airfoils have the proper location and orientation

in the flow field. For circular cascades, the transformation is carried
out at the same time the coordinates are converted to global coordinates.
Coordinates of the element midpoints are determined and the sine and cosine
of the angle of the elements are calculated. The airfoil coordinates are
put in complex form to be used in the complex arithmetic involved in
setting up the A matrix in Equation (11).

The last section of SUBROUTINE PART1 reads in or generates the
coordinates of off-body points where the flow is to be determined. The
coordinates of each off-body point can simply be read in from a card.
However, in many cases it is desirable to locate a prescribed number of
off-body points equally spaced across a section of the flow at a constant
x or r value. Under these circumstances, the program can generate the
coordinates of the off-body points after being given the initial data
for a set of points. By supplying the program with the coordinates of
the first point of the set, the number of off-body points in the set,
and the increment Ay or A6 by which to locate the remaining points, the
program will generate the required coordinates. Any number of sets of
off-body points can be used, provided the total number of off-body points
does not exceed the array dimensions. For circular cascades, the off-body

points are transformed to the linear cascade by SUBROUTINE PARTL.
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SUBROUTINE PART2:

In SUBROUTINE PART2, the set of simultaneocus equations which are
solved for the source distributions on the airfoils are set up. Setting
up the equations consists of calculating the values of the A matrix
and determining the onset flows in Equation (11). Complex arithmetic
is used to calculate the A matrix, such that the real and imaginary parts
yield the coefficients for the flow induced both tangent and normal to
the airfoil surface. The coefficients representing the flow induced normal
to the surface are the values in the A matrix. The coefficients for
the flow induced tangent to the surface are stored and later used to
calculate the velocity on the airfoil surfaces after the source strengths
are known. The sum of the real parts and the sum of the imaginary parts
of the coefficients for each row of the matrix are also calculated in

n

SUBROUTINE PART2. The sum of the real parts is the term 22 Ajk in
k=n
1

Equation (12) and provides the onset flows induced normal to the element
surfaces by circulation. The sums of the imaginary parts provide the
velocities induced tangent to the elements by circulation and are required
to calculate the final velocities at the element midpoints.

SUBROUTINE PART3 and SUBROUTINE PART4:

The set of simultaneous equations for each basic solution are solved
in either SUBROUTINE PART3 or SUBROUTINE PART4 depending on the size of the
problem. SUBROUTINE PART4 reads the coefficients and onsets flows cal-
culated in SUBROUTINE PART2 from files and stores the values in arravs.
SUBROUTINE MIS1 is then called, which solves the equations by matrix
reduction. Since SUBROUTINE PART4 and MIS1 require the entire A matrix
and onset flow matrices to be in the computer core at once, the use of
these subroutines is restricted by the size of the matrices which can be

accommodated in the core.
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There are currently two versions of SUBROUTINE PART3 which will
solve the equations when it is not practical or possible to have the
entire A matrix in the computer core. The original Douglas Neumann
cascade program employed an iterative technique to solve the equations
for large problems. This iterative technique is found in one of the
two current versions of SUBROUTINE PART3. A disadvantage of the iterative
approach is that the complete set of equations must be read from auxiliary
storage for each iteration. Reading data from auxiliary storage is one
of the slower operations of computer processing and, thus, may greatly
increase the computation time.

To reduce the computation time for large problems, a new solution
procedure was developed at ARL/PSU during the current rewriting of the
Douglas Neumann program. The new procedure found in the second version
of SUBROUTINE PART3 reduces the A matrix by operating on blocks of rows
of the A matrix in the core. The procedure is designed to take advantage
of whatever core space is available and it continually optimizes the equation
storage by increasing the number of equations in the core as the number of
nonzero terms in each equation decreases. Comparative computer runs
solving the same problem using the three solution procedures show that
the new procedure requires the least amount of computer time.

The three available solution procedures found in SUBROUTINE PART4
and the two versions of SUBROUTINE PART3 are described in more detail
in Appendix B. Discussions of the storage requirements and the major
advantages and disadvantages of each procedure are included. Appendix B
also describes the program dimension statements so that the user can

choose a solution procedure and modifyv the array dimensions to match the

program for a particular problem to the computer system.

it
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SUBROUTINE PARTS5:

The last major subroutine is SUBROUTINE PART5. Its first function
is to set up and solve the combination equations. The solution of the
combination equations enables the basic solutions to be combined such that
the cascade operating condition and the Kutta condition are satisfied. As
discussed in Section 2.2, the combination equations are based on a AV
across the trailing edge which represents each of the basic solution's
violation of the Kutta condition. The beginning of SUBROUTINE PARTS
calculates the required AV's,

Following the determination of the AV's there are four sections of
the subroutine which solve the combination equations depending on which
of the four possible input parameters were given. If a or ar is the given
cascade operating parameter, the combination equations are solved by matrix
reduction. If CL or Aa is given, the program iterates to determine the
value of o the flow must have to yield the given CL or Aa. The solution
of the combination equations produces the value of the circulation for
each cascade.

Following the solution of the combination equations, SUBROUTINE PARTS
calculates the velocity at the midpoint of each element. This is done by
adding the onset velocities and the velocities induced by all the elements
for each of the basic solutions. When adding solutions, the velocities
of the appropriate basic solutions are scaled by sin a, cos a or the value
of the circulation for each cascade. For circular cascades, the velocities
are next transformed back to the real plane and the data are recordered to
correspond to the data original input order. The airfoil pressure distribu-

tion is calculated from the velocities and then is integrated to yield
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force and moment coefficients. The results are printed and the velocity
calculation process repeats for the other cascades of a multi-cascade
analysis. The last section of SUBROUTINE PART5 calculates the velocity
components and the pressure at each of the specified off-body calculation

points.

IV. PROGRAM VERIFICATION

4.1 Methods of Verification

Every computer program should be checked to assure that it is calculating
what it was intended to calculate. Since the Douglas Neumann program yields
an approximate solution to a potential flow problem, the obvious means
of verifying the program is to analyze the flow through a cascade for which
an exact potential flow solution exists. In this section, results from the
current rewritten version of the Douglas Neumann program are compared to
exact solutions for various types of cascades. The exact solutions are
obtained by using conformal transformations to convert the potential flow
around a single cylinder to the flow around airfoils in infinite cascades.
Besides the comparisons with exact solutions, one additional comparison
is made between the results from the current version of the program and
results from the original version which were presented in Reference [1].
This comparison was made to assure the current version of the program
can analyze multiple cascades of lifting and nonlifting bodies as did the
original program.

It is also important to know how well a computer program predicts

real phenomena or experimental data. However, the degree to which

calculated results match experimental data is not necessarily a check
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on the proper functioning of a computer program. Instead, comparisons

with experimental data are checks on how well the simplifying assumptions
and governing equations represent the real situation. Comparisons of

results from the Douglas Neumann program and experimental data have been
made in other reports but will not be made here. In Reference [1l], measured
pressure distributions for linear cascades are compared to calculated results
from the program. Measured and calculated flow angles for a circular cascade
with the radial flow direction inward are compared in Reference [2].

With the current version of the Douglas Neumann program having the
additional capability of analyzing circular cascades, several new solutions
as well as the original solutions for linear cascades required verifica-
tion. The types of cascades for which the solutions required verification
were:

1. A linear cascade.

2. A circular cascade with the radial flow inward.

3. A circular cascade with the radial flow outward.

4. Multiple cascades of each of the first three types.

5. Multiple cascades consisting of both lifting and nonlifting bodies.
Solutions for the first three types of cascades were verified by comparing
them with their corresponding exact analytical solution. For multiple
cascades of each type, a single cascade was modeled as several cascades,
thus the same exact solution could be used to verify both single and
multiple cascades. As previously mentioned, the fifth tvpe of cascade
solution was verified by comparing the results from the current version

of the program with the results presented in Figure 5 of Reference [1].
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The cascade parameters CL (CL is a parameter for linear cascades
only), Gps O, and Ao were all known from the exact solutions for the
various types of cascades. Thus, each of the cascade parameters could
be used as input to the program to check the various input options. Using
each of the different cascade parameters as input, the other parameters
were calculated by the program. In this way, the cascade parameters
calculated by the program were verified. As required, the calculated
pressure distributions on the airfoils were nearly identical regardless
of the input parameter. Velocity components at points off the bodies
were also obtained from the exact analytical solutions and were used to
check the off-body data calculated by the program.

4,2 Exact Analytical Cascade Solutions

Exact potential flow solutions for linear and circular cascades can
be obtained from the flow around a circular cylinder by employing a series
of conformal transformations. The transformations used to obtain a linear
cascade are the same as those found in References [1] and [3]. An additional
transformation was then employed to transform the linear cascade to a
circular cascade.

Flow around a circular cylinder is generated by locating a pair
of sources and vortices at points B' and B' and a pair of sinks and
vortices at points A' and A" shown in the S-plane of Figure 7. The
locations of the source, sink and vortex pairs determines the position
of the cylinder. The position of the cylinder in turn determines the
final shape of the airfoils after the transformation. To form a cylinder,
the sink and vortex at point A' must mirror the sink and vortex at A",
and similarly the singularities at B' and B" must do the same. The two

points of each pair lie on the same radial line and the radial distance
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from the center of the cylinder to the inner point is the inverse of

the radial distance to the outer point (i.e. if A' is r from the center,
A" is 1/r from the center). To satisfy continuity, the source and the
sink have the same strength., Together, the sourgghwﬁiﬂk and vortex
strengths determine the inlet flow angle and must also be specified so
as to satisfy the Kutta condition. With this brief background, the
following parameters and coordinates provide the necessary information

for the cylinder used:

a = radius of the cylinder = 1.0
d = distance to the point where the cylinder intersects
the X axis (this point becomes the T.E. of the airfoils) i
d = .8460254 |
Point Coordinates 2
Center of the Circle (~0.02, 0.5)
Al (1.06605, 0.0)
A" (0.739739, 0.150228)
B' (-1.088605, 0.0) ;
B" (-0.787722, 0.140783)

Two sequential transformations are used to map the cylinder in the
complex S-plane into a cascade of airfoils. The first transformation

maps the cylinder into a single airfoil shape in the complex Q-plane

as illustrated in Figure 7. This transformation is performed by the

following equation:
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Q-rd_ (s -af (54)
Q+ rd [S+d
where r = trailing-edge-angle constant = 1,85
Q = complex coordinates in the Q-plane
S = complex coordinates in the S-plane
The second transformation maps the airfoil shape in the complex
Q-plane into a cascade of airfoils in the complex Z-plane. This
transformation is:
= Q-38 5
Z=1ln [Q Y (55)

A and B are the complex coordinates of the points in the O-plane ccrresponding
to the points A' and B'. Points A and B are illustrated in Figure 7. The
numerical value of A and B can be found by plugging the given coordinates
for A' and B' into Equation (54), respectively.
The linear infinite cascade of airfoils resulting from the second ,

transformation is illustrated in the Z-plane of Figure 7. This is the

cascade which was analyzed with the current version of the Douglas Neumann
program to verify the program functions properly. The cascade was analyzed
as a single cascade and was also modeled and analyzed as multiple cascades.
As an example of a multiple cascade model, the numbers above the airfoils

in Figure 7 identify the members of each cascade for a two cascade model.

To obtain a circular cascade for which an exact potential flow
solution is possible, a third transformation is applied to the linear
cascade. Before the third transformation is applied, however, the linear
cascade is modified slightly. For the case illustrated in Figure 7,

where the circular cascade has the radial flow direction inward, the

linear cascade is translated and the signs of the X5 Y, coordinates
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are changed. These changes, resulting in the cascade illustrated in

the z'-plane of Figure 7, are necessary to obtain the desired airfoil
orientation and flow direction for the circular cascade in the T-plane.
In Figure 8, the transformations leading to a circular cascade with

the radial flow direction outward are illustrated. Up through the
Z-plane, the transformations are identical to those in Figure 7. 1In

the z'-plane of Figure 8, however, it is seen that the cascade only
needs to be translated to the +xZ direction to yield the desired airfoil
orientation and flow direction in the T-plane.

The transformation used to go from the Z'-plane to the T-plane is
the same transformation used in the program, except that for the exact
solutions it is used in complex form. To obtain the new form, Equations
(20) and (21) are first repeated here in terms of the nomenclature of

Figures 7 and 8.

(57)

It is necessary to express the cartesian coordinates of the T-plane

in terms of rT and ST.

»
]

T rp cos GT (58)

yT = rT sin BT (59)

Applying the identities of Equations (56) and (57) to Equations (58) and

(59) yields:
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X,
X, = e 2 cos Y, (60)
|
= XZ‘ 1
yT e sin yz, (61)
. Expressing Xp and yp as a complex number yields the new form of the
f} transformation. |
: i
X = ; = oXz .. !
T = XT + i yT = e (cos yz, + i sin yz') }
= oFz' (V2! _ Xz' * 1iype
Zl
T = e (62)

This new expression of the transformation in complex form facilitates
the calculation of the complex velocities in the exact solution of the
flow field for the circular cascades.

Starting with coordinates of points on the surface of the cylinder
in the S-plane the preceding transformations define the cascade geometries
for which an exact potential flow solution is obtained. The transformations
also provide the local coordinates of points defining the airfoil shapes,
which are required as input to the Douglas Neumann program. To obtain the
exact flow field solution, however, it is necessary to apply the trans-

formations to the complex potential function which represents the flow

around the cylinder in the S-plane. The complex potential function F(S)

is derived by adding the contribution of each singularity




26 June 1981
) AMY:cag

F(S) = -E In(S - A'") + iG In(S - A') - E In(S - A")

sink vortex 2 sink

- iG 1n(S - A")
vortexg

(63)

+ E 1n(S - B') - iH 1n(S - B') + E In(S - B") + iH 1n(S - B")

vortex )

source vortex source

where E = source and sink strength
. G = vortex strength at A' and A"
H = vortex strength at B' and B"

Equation (63) can be written in simplified form as:

F(S) =K 1n (S-A") +K 1n (S-4") +K, In (S-B") + Eé In (S - B") (64)
where Kl = -E + iG
Ei = complex conjugate of Kl
K2=E-1H
Eé = complex conjugate of K2
Of greater significance than the complex potential function is its

derivative W(S), which is the complex velocity in the S-plane.

K K K X
W(S) = dF(S) _ 1 . 1 + 2 + 2 (65)

(S -A") (S-4a" (S - B") (S - 8"

To get the complex velocity in other planes, the chain rule is applied.

For the Z plane, W(Z) is obtained as follows:

{ _ dF(zZ) _ dF(S) ds dqQ

W(Z) = =37 =45 dq dz (66)

or for the T-plane:
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- 9F(T) _ dF(S) dS dQ dz 42"
w(T) = dT ~ dS dQ dZ dZ' dT ) (67)

Taking the required derivatives of the equations representing the

various transformations yields:

. ds 5% _4° b

—= = "5 (68)
Q" G2 _ 2,2

d0 _ Q% - Q(A + B) + B

dz =~ A - B (69)
dz .
47T = a constant which depends on which radial
cascade is desired (70)
dz' A !
T = e (71)

The preceding equations complete all the equations which are required
to calculate the velocity at any point in the various planes. It should
be noticed that to calculate the derivatives in Equations (68), (69) and
(71), the complex coordinates of the point under consideration are required
in the S, Q and Z' planes. Thus, to calculate the velocity at a point in
the T-plane, for example, the corresponding points in the other planes must

first be determined using the transformations of Equations (54), (55) and

(62). After the coordinates of these points are known, the velocity at the
original point in the S-plane is calculated using Equation (65). This
complex velocity is then multiplied by the derivatives calculated from
Equation (68) through (71) yielding the desired velocity at the point

in the T-plane.
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Before concluding this section on calculating an exact potential
flow solution for an analytically derived cascade geometry, the constants

Kl’ Kl’ K2 and Kz remain to be specified. These constants are chosen so
as to yield the desired inlet or average flow condition and also to satisfy
the Kutta condition. Since Ei and EZ are complex conjugate of Kl and K2,

respectively, it is only necessary to determine K1 and KZ' The desired flow
conditions are known or specified far upstream and far downstream of the
cascade in the Z-plane. Thus, it is desirable to express Kl in terms of
W(z) as X, approaches plus infinity and K2 in terms of W(Z) as X, approaches
negative infinity. The points A and B go to plus infinity and minus
infinity, respectively, during the transformation from the Q-plane to

the Z-plane. Thus, taking the limit of W(Z) as S approaches A' and Q
approaches A yields the limit of W(Z) as X approaches plus infinity.

From this limit the following equation results:

w(z) = Kl = Vx - 1Vy » at x_ = + o (72)

Similarly, taking the limit of W(Z) as S approaches B' and Q approaches

B yields:

W) = - Ky =V - iV, at x = - . (73)

The velocity components in Equations (72) and (73) can be expressed
in terms of the magnitude of the average cascade velocity U, the cascade
average flow angle o and the upwash and downwash velocity created by the

circulation on the airfoils.

K1 = Uflcos a - i(sin a - Vdn)] (74)
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K2 = U[{-cos o + i(sin o + vup)] (75)

(Vv and V, are nondimensionalized by U)
up dn

In order for the velocities and coefficients calculated with the exact
solution to match the data from the Douglas Neumann program, Kl and K2

are nondimensionalized by U yielding:

~
1]

cos o - i(sin a - Vdn) (76)

>~
"

-cos a + i(sin o + Vup) 77>

(Note: The equations for the exact solution in Reference [1] are
nondimensionalized by the magnitude of the inlet velocity VI)

By definition, Vup is equal to V Thus, if o is specified, Vup

dn’
and Vdn constitute one unknown which can be solved for by requiring the
trailing edge of the airfoils to be a stagnation point. However, rather
than arbitrarily selecting a, Vup and Vdn were expressed in terms of

the 1lift coefficient CL which was given the arbitrary value of 1.75

for the current check cases. With CL specified, o must be determined

such that the Kutta condition is satisfied. The expressions for K, and

1
Kz in terms of o and CL are:
CL
Kl = ¢cos a - i(sin a - ZEF) . (78)
CL
K2 = - cos a + i(sin a + ZEF) . (79)

cascade spacing
chord

n

where SP = dimensionless cascade spacing

Inserting the preceding expressions for K, and K2 Along with their complex

1

conjugates into Equation (63) provides the necessary equation for

determining «. The complex velocity W(S) must be zero at the point on

m e ————— b
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the cylinder where it intersects the X axis, since this point becomes
the trailing edge of the airfodls in the Z-plane. Solving for a with
a simple interval halving technique yields a = -0.86154 degrees.

The determination of o completes the explanation of the exact
analytical cascade solution. Important parameters for the cascade in

the Z-plane are summarized below:

SP = 0.79675

CL =1.75

o = -0.86154 degrees
a; = 28.10800 degrees
ap = -29.43192 degrees

Ao = 57.53992 degrees
The values given above for the angles are also true for the circular

cascades since angles are preserved by conformal transformations.

4.3 Comparisons of the Program Results With Exact Analytical Solutions

The first comparison of the program results with an exact analytical
solution is made for the linear cascade illustrated in the Z-plane of
Figure 7. The pressure distributions on these airfoils obtained from
the cascade program and the exact solution are shown in Figure 9. It is
seen from Figure 9 that the agreement in the data is excellent, as it
should be if the program is functioning properly. Near the center portion
of the airfoil, the differences between the two results are the largest.
For the computer run, the points representing the airfoil were more

closely spaced near the leading and trailing edges of the airfoil in

order to adequately describe the airfoil shape. More points in the
center region of the airfoil should improve the results in this area.

Near the leading and trailing edges where a large number of points were ?
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used, the steep pressure gradients are very accurately calculated by the
cascade program.

The cascade solution yielding the pressure distribution shown in
Figure 9 was obtained by representing the airfoil with 99 points. As just
stated, more points should yield a more accurate solution, but even with

99 points the results are probably within required engineering accuracy.

Most airfoil shapes employed in engineering practice will not have the
large amount of blade curvature present in the analytical profile. For
this reason, 100 or less points will usually adequately represent any
airfoil of engineering significance. A means of checking if a given
number of points is sufficient to represent an airfoil is to change the
number of points and determine if the solution is significantly altered.
It is recalled that the technique employed in the Douglas Neumann program
will yield results which approach the exact solution as the number of
points approaches infinity.

In order to verify that the program functions properly for each of the
various input options, several cases were run for each cascade with the
different cascade operating parameters given as input. In addition, the
options of running a case as a subcase of the previous case or directing
the program to go directly to the combination equations were checked.
Using the linear cascade as an example, CL was the cascade operating
parameter given as input for the first case. For the second case, o was

the input parameter and the case was run as a subcase of the first case.

For the third and fourth cases, Aa and o_ were the input parameters,

I

respectively, and the program was directed to go directly to the combina-

tion equations., The pressure distributions calculated by the program for i |

each of the four cases were found to be nearly ilentical. Comparisons
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of the cascade parameters calculated by the program for the four cases
along with the values obtained from the exact analytical solution are

presented in Table 1.

TABLE 1

A Comparison of Cascade Parameters Obtained

From the Program for the Various Input Parameters

r* Values Obtained From the Cascade Program l

Case Input

f Paraneter CL o Aa=aI—aE er ap

1 CL —_— -0.7712 57.5388 28.1768 ~-29.3620

2 o 1.7451 —_— 57.4040 28.0392 ~29.3648

3 Ao 1.7503 -0.7645 —_— 28.1871 ~29.3618

4 o 1.7475 -0.8165 57.4714 —_— ~29.3634
Values From the | ; 75 | _5 8615 | 57.5399 | 28.1080 | -29.4319
Exact Solution

From the fact that the pressure distributions for the four cases were

nearly identical and from the results shown in Table 1, it is apparent

that the various input and running options in the program function properly.
The linear cascade shown in the Z-plane of Figure 7 will also be

used for an example of the verification of the program results for off-body

points. The locations of the off-body points are marked with "x's" in

Figure 7. Table 2 lists the coordinates of the off-body points along

with the velocity components at these points obtained from both the

cascade program and the exact analytical solution. The values shown

in the table verify that the program properly calculates the velocity

components at off-body points.
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TABLE 2

A Comparison of Velocity’Components at Off-Body Points

Obtained From the Cascade Program and the Exact Analytical Solution

Off-Body Point Cascade Program Exact Analytical
Coordinates Results Solution
x/c y/c v./U Vy/U v /u Vy/U
-0.7424 0.3984 0.9663 0.5518 0.9683 0.5502
-0.7424 0.0 1.0239 0.5195 1.0252 0.5180
-0.7424 -0.3984 0.9663 0.5518 0.9683 0.5502
-0.4924 0.1992 0.9756 0.3831 0.9762 0.3829
-0.4924 0.0 1.1106 0.4345 1.1110 0.4333
~0.4924 -0.1992 1.2289 0.6373 1.2285 0.6344
0.0 0.3011 0.9510 0.0088 0.9526 0.0086
0.0 0.1188 1.0827 -0.0028 1.0830 -0.0031
0.0 -0.0635 1.2305 -0.0133 1.2306 -0.0138
0.5077 0.1992 0.9427 -0.4307 0.9404 -0.4314
0.5077 0.0 1.0824 ~0.4592 1.0809 -0.4601
0.5077 -0.1992 1.1879 ~0.6175 1.1868 -0.6188
0.7577 0.3984 0.9806 ~0.5822 0.9790 -0.5840
0.7577 0.0 1.0190 -0.5445 1.0174 -0.5461
0.7577 ~0.3984 0.9806 -0.5822 0.9790 -0.5840

In Figure 10, ti~ pressure distributions are presented for the
airfoils in the circular cascade with the radial flow inward. This
cascade 1is illustrated in the T-plane of Figure 7. As seen from Figure 10,
the results from the exact analytical solution and the cascade program are
nearly identical. Again, the differences in the results cinould be reduced
by increasing the number of points.

It is interesting to compare the shape of the pressure distribution
for the airfoils in the linear cascade with the pressure distribution

for the airfoils in the circular cascade. From Figure 9, it is seen

that the pressure distribution for the linear cascade has two nearly




— " ﬁ,uf-w " AN ity rs R
- ... -

-65- 26 June 1981
AMY: cag

ﬂ.

-6.0 T T T T

| EXACT ANALYTICAL SOLUTION 2

| o CASCADE-PROGRAM SOLUTION

’ -5.0 r 0p = 25.108 AN
| o = -29.432 °

-4.0 A
-3.0 F >
0 )
Ce [o € .
—2.0 H ® 9 “
U - 0
Q@
-1.0 F -
] l:"u
' } & 5
, 0 . D ﬁ "_,:“. i . > o ] o ] UT, U‘L-"‘—J‘
' ;]i‘ 0mm o0 °
| |
1.0 : 1 L 1 ]
0.0 0.2 0.4 0.6 0.8 1.0

X/C

Figure 10. A Comparison of the Pressure Distributions Obtained From the
Exact Solution and the Computer Program for the Circular
Cascade Illustrated in the T-Plane of Figure 7
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symmetrical peaks. The pressure distribution shown in Figure 10 for

the circular cascade with the radial flow inward has one large peak

and one small peak. The airfoil geometries in the two cascades are

a little different due to the transformation from the Z-plane to the
T-plane. However, the major effect causing the pressure distributions
to have different shapes is the change in radius for the circular cascade.
The trailing edge of the airfoil in the circular cascade is at a smaller
radius than the leading edge. For this reason, the velocity near the
trailing edge will be greater than the velocity near the leading edge,
resulting in the trailing edge peak to be greater than the peak in the
pressure distribution near the leading edge.

Figure 11 shows the comparison of the pressure distributions for
the last type of cascade, the circular cascade with the radial flow
outward. This cascade is illustrated in the T-plane of Figure 8. In
Figure 8, notice the orientation of the airfoil in the local coordinate
system used for the program input. Since the airfoil is inverted in the
local coordinate system, the airfoil is also shown this way in Figure 11.
In addition, the scale for Cp is inverted from the previous scales to
match the airfoil. TFor the circular cascade with the radial flow outward,
it is again seen that the pressure distributions computed with the exact
analytical solution and the rewritten version of the Douglas Neumann
program are nearly identical.

The pressure distribution shown in Figure 11 is similar to the
pressure distribution in Figure 10, in that it has one large peak and
one small peak. However, for the circular cascade with the radial flow
outward, the large peak is near the leading edge, since the leading

edge is at the smaller radius where the velocity is larger.
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Figure 11. A Comparison of the Pressure Distributions Obtained From the
Exact Solution and the Computer Program for the Circular
Cascade Tllustrated in the T-Plane of Figure 8
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For both types of circular cascades, the various input options,
program running options, and the off-body point results were all
verified in the same manner as explained for the linear cascade. The
three types of single cascades were then modeled as multiple cascades to
verify the program results for multiple cascade analyses. The pressure
distributions for the different cascades of a multiple cascade model
were found to be nearly identical to each other and to the results
for the single cascade. The flow angles and off-body point results X
were also found to be correct for multiple cascade analyses. :

4,4 Verification of Results for Multiple Cascades of Lifting and

Nonlifting Bodies

A special case of a multiple cascade analysis results when some
cascades have lifting bodies and others have nonlifting bodies. To
verify that the current version of the Douglas Neumann program could 1
handle this special case, results from the current version of the program
were compared to results published for the original program in
Reference [1l]. The cascades analyzed and the resulting pressure distri-
butions are shown in Figure 12. The first and third cascades consist of
cylinders with no circulation. The second cascade consists of cylinders
which have circulation. In the computer program, the circulation 4
resulted from specifying the rear stagnation point (trailing edge)

to be at -30° on the cylinder. As seen from Figure 12, the pressure

distributions from the two programs are nearly identical, which verifies
the current version of the program can correctly analyze the special
case of multiple cascades with 1lifting and nonlifting bodies. (Note:
The first and third cascades do have lift forces on them due to induced
effects of the second cascade. However, they do not produce lift on

their own.)

R . e
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A Comparison of Pressure Distributions for Cascades of Lifting
and Non-Lifting Bodies Obtained From the Original and the Current
Version of the Douglas Neumann Cascade Program :
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APPENDIX A

A Users Guide for Running the Program

A.1 Explanation of Program Input

The main body of this report has given the theory behind the program,
has defined the input and output variables, and has discussed how various
types of cascades can be modeled. A basic understanding of the preceding
material should enable the program to be used and the results understbod
with little difficulty. This appendix will give detailed instructions
on how to input the required data to the program. In the latter sections
of this appendix, sample input and sample output are presented.

Before describing the program input, attention is called to Figures Al

ad A2 which illustrate the geometric parameters involved in the input.
Figure Al illustrates two linear cascades and Figure A2 illustrates
two circular cascades. Input for one cascade or more than two cascades
follow the same format. With regard to circular cascades, it should be
pointed out that except for two parameters, the input for circular
cascadés with the radial flow inward and the input for circular cascades
with the radial flow outward are identical. Of the two parameters which
differ, one tells the program the flow direction and the other specifies
the location of the trailing edge when the radial flow direction is
outward, *
For each input card required by the program, the title of the
card will be followed by the variables which appear on the card and their
required format. After the list of variables, a description of each
variable will be given. The following sequence of cards can be repeated i

several times in order to run several cases at once. The program will

continue to process runs until a code on the second card tells the
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program to terminate. The various options available for analyzing a

special case of the previous run will be explained as the appropriate

input variables are encountered.

Heading Card: HEDR FORMAT (20A4)

HEDR - A heading which describes the run and is read as alphanumeric
characters. This heading is printed at the top of each page
of output.

Control Card: NB, FLGO2, FLGO3, FLGO4, FLGO5, FLGO6, FLGO7, FLGOS8,

FLG09, FLG10, FLG1l1l, FLGl2 FORMAT (12I5)
NB - number of bodies or cascades
FLGO2 -~ A nonzero integer if the flow is to be determined at points
off of the bodies.

As stated in the main body of this report, o, Aa, a._, or CL can be

I

used in the combination equations for specifying the operating condition

of the cascades. FLGO03 through FLGO6 specify which input parameter is

used.

FLGO3 - A nonzero integer if a is to be used in the combination equations.

FLGO4 - A nonzero integer if Aa is to be used in the combination equations.

FLGOS5 - A nonzero integer if ay is to be used in the combination equations.

FLGO6 - A nonzero integer if CL is to be used in the combination equations.
CL cannot be used as input for circular cascades.

FLGO7 - A nonzero integer if the matrices of influence coefficients (A and

B) and the onset flows are to be printed. The A matrix represents
the velocity components induced normal to the surface and the
B matrix represents the velocity components induced tangent to
the surface. A and B are large matrices and normallv are not

printed (FLGO7 = 0).
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A nonzero integer if the program is to go directly to the combination
equations using the basic solutions of the previous case. This
option can be used only if the cascade geometry is identical to
the previous case (i.e. only the flow angle or CL is changed).
Off-body point data input is independent of FLGOS.

A nonzero integer if the cascades under consideration are circular
cascades.

For circular cascades, FLG1l0 is a nonzero integer if the radial
flow is outward and FLGlO is zero if the radial flow is inward.

A nonzero integer if the first cascade geometry is to be repeated
for a multiple cascade analysis. This option was included as an
aid in inputting data when modeling the cascades requires one
geometry to be repeated with equal spacing between each body

(as with the wicket gates in the example illustrated in Figure 6).
A nonzero integer if the program is to be terminated. The

program will continue to try to process additional runs until
terminated. Thus, terminating the program at the end of a run
requires a heading card, which can be left blank, and a control

card with FLG12 a nonzero integer.

i

e - "uW“
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Cascade Parameter Card: SP, CL, ALPHA, FALPHA, DALPHA, SUBKS FORMAT (5F10.0,

SP - Cascade Spacing
For linear cascades, SP is the dimensionless cascade spacing nondimen-
sionalized by the chord of one of the cascades. The chord used to
nondimensionalize SP must also be used to nondimensionalize the chords
of all the cascades in order to keep the relative size and spacing

correct. From this point on, the chord of the body used to nondimen-

sionalize SP will be referred to as the reference chord CLef"
For circular cascades, SP is the angular spacing in degrees.
Only one of the parameters CL, ALPHA, FALPHA, DALPHA needs to be
specified, depending on which one is to be used in the combination
equations. If not used in the combination equations, any value read is
ignored.
CL - Lift coefficient. CL can only be input for linear cascades.
ALPHA - Average flow angle a.
FALPHA - Inlet flow angle ap-
DALPHA - Change in flow angle through the cascades, Aa.
SUBKS - A nonzero integer if the unmodified coordinates of all the
bodies of the previous case are to be used for the present
case. The chords, stagger angles, position of the cascades,
etc. may change. For a subcase, the program reads the coordinate
data from files generated in the previous run, but then proceeds
just as if the coordinate data had been read from cards.
If FLGO8 is nonzero (i.e. the program is going directly to the combination

equations), the cascade parameter card completes the required input describing

the cascades. The next input will be the off-body point data, if the flow

at off-body points is to be determined for this case.

15)
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Similar Cascade Card: NCSG FORMAT (I5)

NCSG - The number of cascades with geometry similar to cascade 1,
including cascade 1.
This card is only required if several cascades have the same geometry and

the coordinates of the similar cascades are to be generated internally

subsequent to the input of the coordinates for the first cascade (i.e.
this card is not required unless FLGll is nonzero).

Cascade Geometry Card: CHORD, CCANG, XP, YP, RPADDX, ADDY, NP, NLF,

NLE FORMAT (6F10.0, 3I5)
CHORD - Dimensionless chord of the body. CHORD should be nondimensionalized
by the chord of one of the cascades Cref" For a single cascade
analysis, CHORD = 1.

CCANG - Stagger angle £ of the airfoils in the cascade, as illustrated

in Figures Al and A2.

XP, YP - Local coordinates of a point in or on the body which is used to
locate the body in the global coordinate system. The body is
also rotated around the point (XP, YP) to obtain the desired
stagger angle. In addition, the force and moment coefficients
are calculated at this point. XP and YP must be nondimensionalized
by the chord of the body they are for.

RPADDX - For circular cascades, RPADDX is the radius in the global coordinate

system at which the point (XP, YP) is located, as illustrated in

Figure Al.

For linear cascades, RPADDX is the x location in the global coordinate

system at which the point (XP, YP) is located, as illustrated in

Flgure Al.

i

RPADDX must be nondimensionalized by Crof"
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ADDY - For circular cascades, ADDY is the angular location in the global b
coordinate system of the point (XP,YP) for one of the bodies in the
cascade. ADDY is illustrated in Figure A2 and must be expressed in
degrees.

For linear cascades, ADDY is the y location in the global coordinate
, system of the point (XP,YP) for one of the bodies in the cascade.
ADDY is illustrated in Figure Al and must be nondimensionalized

by ¢

ref

NP - Number of points which will be used to represent the body.

T P e e

NLF - A nonzero integer if the cascade is nonlifting. If lifting
and nonlifting bodies are both present in a multiple cascade

analysis, the data for the lifting bodies must be read in first.

NLE - For circular cascades with the radial flow outward, NLE is the
number of the point which will be the true trailing edge of the
airfoil. NLE is not required for the other types of cascades,
because the location of the trailing edge is known from the
starting point of the data.

Body Coordinate Cards: X, Y FORMAT (2710.0)

X, Y ~ Coordinates of points on the body in the local coordinate system
x'-y' which describe the shape of the body. x and y must be
nondimensionalized by the chord of the body. There are NP
body coordinate cards and the data must start at che points
i labeled in Figures Al and A2. For linear cascades and circular
cascades with the radial flow inward, the starting point is the 1
trailing edge of the airfoil. The first point must be repeated

as the last point.
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Unless the case being run is a subcase or similar cascade geometries are

being generated internally, the cascade geometry card and the body coordinate

cards are repeated for each cascade of a multiple cascade analysis. If the
case being run is a subcase (SUBKS is nonzero), only the cascade geometry
cards are required and the body coordinate data will be read from files.

If similar cascades are being generated internally (FLGll is nonzero),

the cascade geometry card and the body coordinate cards are required for
the first cascade and for each different cascade after the first NCSG
cascades. For the cascades generated internally, the parameters CHORD,
CCANG, XY, YP, RPADDX, NP, NLF and NLE are all set equal to the values

for the first cascade. ADDY is indexed by the value SP/NCSG for each
cascade generated internally.

0ff-Body Point Data

Coordinates of off-body points where the flow is to be analyzed
can be read in or generated internally after providing initial information
to the program. The off-body points can be grouped in sets in order to
provide flexibility in the generation and distribution of the points.
None of the following cards are required if FLGO02 is zero.

Number of Sets Card: NSETS FORMAT (I5)

NSETS - Number of sets of off-body points to be read in or generated
internally.

Set Initial Data Card: NCR, NPS, XR, YT1l, DELYT FORMAT (215, 3F10.0)

NCR - A nonzero integer if the off-body points of this set are to be

read from cards

- Zero if the off-body points of this set are to be generated internallv.
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NPS - Number of points in the set
If NCR is a nonzero integer, XR, YTl and DELYT do not need to be specified.
XR - For linear cascades, XR is the x coordinate of the off-body points
to be generated in this set.
For circular cascades, XR is the r coordinate of the off-body
points to be generated in this set.
XR must be nondimensionalized by Coef"
YT1 - For linear cascades, YTl is the y coordinate of the first point
in the set. YTl must be nondimensionalized by CLref’
For circular cascades, YTl is the 6 coordinate of the first point
in the set, expressed in degrees.
DELYT - For linear cascades, DELYT is the y increment by which the
remainder of the points in the set will be generated. DELYT
must be nondimensionalized by Cef" ,

For circular cascades, DELYT is the 8 increment by which the

remainder of the points in the set will be generated. DELTY
must be expressed in degrees.

0ff-Body Coordinate Cards: XOB, YOB FORMAT (2F10.0)

If the off-body points are to be read in for this set (NCR is nonzero),
NPS off-body point coordinate cards are required.
XOB, YOB - For linear cascades, XOB, YOB are the x, y coordinates of the

off-body points nondimensionalized by c¢

.

ref

For circular carcades, XOB, YOB are the r, 0 coordinates,

respectively, of the off-body points. XOB must be nondimensionalized

by Cror and YOB must be expressed in degrees. .
i
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The set initial data card and the off-body point coordinate cards when
appropriate are required for each set.

The off-body point data completes the description of the various types
of input for the program. Data for the next case can follow the present
case starting with a new heading card. As previously stated, the program
can be terminated by supplying a blank heading card and making FLG12 a

nonzero integer on the control card.
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APPENDIX A.2

Sample Program Input:

Analytic Cascade Profile C--Multiple Rectangular Cascades

The following sample input data represent the linear cascade and
off-body points shown in the Z-plane of Figure 7. The cascade is modeled
as two cascades to illustrate a multiple cascade analysis. The coordinates
for the second cascade are generated internally (FLGll = nonzero integer
and NCSG = 2), thus, only one set of coordinate data points are given.
Relative to the airfoils, the off-body points are the same as those shown
in Figure 7 and Table 2. However, since the leading edge of the reference
airfoil was positioned at the origin of the global system, the off-body
points reflect this position and are translated from those shown in the
figure and table.

Data are given for four consecutive runs which demonstrate the programs
various input options. The first run has CL as the given cascade operating
parameter., (Note: CL = 2(1.75) = 3.5, since the cascade is modeled as
two similar cascades.) Following the data for the first run, the data for
the second run directs the program to go directly to the combination
equations using Ao as the cascade operating parameter. The third run
is a subcase of the previous run (coordinate data are read from a file)
and ap is the given cascade parameter. The final run again directs the
program to go directly to the combination equations, this time with a
as the cascade operating parameter. The data for these four run options

will enable the user to verify that the program is operating properly.

The output for the first run only is given in Section A.3. The output

for the subsequent runs should be similar.

e
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ANALYTIC CASCADE PROFILE C--MULTIPLE RECTANGULAR CASCADES

2 1 0 0 0 1 0 0 0 0 i 0
1.59350 3.5 0.0 0.0 0.0 0
2
1.0 0.0 0.0 0.0 0.0 0.0 99 o

1.00000 0.0
0.99890 0.00098
0.99602 0.00348
0.99152 0.00719
0.98553 0.01180
0.97817 0.01701
0.96960 0.02255
q 0.95998 0.02816
: 0.94953 0.03366
2 0.93843 0.03890
0.92688 0.04379
0.91502 0.04829
0.90301 0.05237
0.89095 0.05606
0.87892 0.05937
0.86700 0.06232
0.85522 0.06495
0.83222 0.06939
0.81007 0.07290
0.78881 0.07569
0.75852 0.07387
0.71186 0.08230
0.62919 0.08537
0.55523 0.08589
0.48510 0.08489
0.41495 0.08242
0.34107 0.07782
0.29316 0.07333
0.26779 0.07031
0.24130 0.06658
0.21358 0.06194
0.18458 0.05610
0.15440 0.04875
0.12342 0.03957
0.10271 0.03236
0.08238 0.02438
0.06298 0.01593
0.05381 0.01170
0.04509 0.00763
0.03692 0.00383
0.02935 0.00047
. 0.02246 =0.00228
{ 0.01629 -0.00421
0.01092 -~0.00514
0.00639 -0.00486
0.00274 ~0.00319
0.0 0.0
. -0.00131 0.00471
T -0.00259 0.01086




-0.00223
~0.00060
0.00237
0.00669
0.01231
0.01906
0.02676
0.03520
0.05342
0.07236
0.09111
0.11791
0.14262
0.16520
0.19863
0.25330
0.29687
0.36487
0.41915
0.46715
0.51338
0.56164
0.61651
0.68571
0.73031
0.75661
0.78649
0.79965
0.81359
0.82839
0.84409
0.86074
0.87833
0.89676
0.90622
0.91578
0.92250
0.93490
0.94425
0.95328
0.96185
0.96978
0.97692
0.98315
0.98838
0.99259
0.99580
0.99807
0.99947
1.00000
1

1 15
-0.25000
-0.25000

0.01827
0.02667
0.03576
0.04520
0.05467
0.06387
0.07260
0.08069
0.09477
0.10607
0.11499
0.12491
0.13189
0.13690
0.14250
0.14832
0.15099
0.15297
0.15334
0.15303
0.15227
0.15097
0.14872
0.14421
0.13980
0.13640
0.13160
0.12910
0.12614
0.12262
0.11838
0.11324
0.10693
0.09917
0.09463
0.08960
0.08576
0.07791
0.07121
0.06396
0.05622
0.04810
0.03978
0.03149
0.02352
0.01618
0.00982
0.00476
0.00135
0.0

0.0
-0.39837
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-0.25000 -0.79675
0.0 -0.19919
0.0 -0.39837
c.0 -0.59756
0.49235 -0.09729
0.49235 -0.27957
0.49235 -0.46185
1.0 -0.19919
1.0 -0.39837
1.0 -0.59756
1.25 0.0
1.25 ~0.39837
1.25 -0.79675
ANALYTIC CASCADE PROFILE C--MULTIPLE RECTANGULAR CASCADES
2 1 0 1 0 0 g 1 0 0 1 0
1.59350 0.0 0.0 0.0 57.53992 0
1
1 15
-0.25000 0.0
-0.25000 -0.39837
-0.25000 -0.79675
0.0 -0.19919
0.0 -0.39837
0.0 -0.59756
0.49235 -0.09729
0.49235 -0.27957
0.49235 -0.46185
1.0 -0.19919
1.0 -0.39837
1.0 -0.59756
1.25 0.0
1.25 -0.39837
1.25 -0.79675
ANALYTIC CASCADE PROFILE C~--MULTIPLE RECTANGULAR CASCADES
2 1 0 0 1 0 0 0 0 o 1 0
1.59350 0.0 0.0 28.108 0.0 1
2
1.0 0.0 0.0 0.0 0.0 0.0 99
1
1 15
-0.25000 0.0
-0.25000 -0.39837
-0.25000 -0.79675
0.0 -0.19919
0.0 -0.39837
0.0 -0.59756
0.49235 -0.09729
0.49235 -0.27957
0.49235 -0.46185
1.0 -0.19919
1.0 -0.39837
1.0 -0.59756
1.25 0.0
1.25 -0.39837
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1.25 -0.79675
ANALYTIC CASCADE PROFILE C~-MULTIPLE RECTANGULAR CASCADES
2 1 1 0 0 0 0 1 0 0 1 0
1.59350 0.0 -0.86154 0.0 0.0 0
1
1 15
-0.25000 0.0
-0.25000 -0.39837
-0.25000 -0.79675
0.0 -0.19919
0.0 -0.39837
0.0 -0.5975%6
0.49235 -0.09729
0.49235 -~-0.27957
0.49235 -0.46185
1.0 -0.19919
1.0 -0.39837
1.0 -0.59756
1.25 0.0
1.25 -0.39837
1.25 -0.79675




| -87- 26 June 1981
1 ‘ AMY:cag !

APPENDIX A.3 ]

Sample Program Output Using Data in Appendix A.2.

Only the Output Which Uses CL in the Combination

Equations is included.
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APPENDIX B

B.1 Data Storage and Equation Solution Procedures

Appendix B is included in this report because the data storage space

required by the program is one of the primary concerns when adapting the

program to a particular computer system and/or a particular problem. A

, discussion of the available methods for solving the system of equations
A is included, because the method used depends on the size of the problem
' and the amount of core storage available. Although the program is quite
general, the purpose of this appendix is to give the program user an
understanding of the storage requirements and equation solution techniques
so that he can modify the program to meet his needs in the most economical
and time efficient manner. For example, if the user has large problems
but a computer with a small core; the array dimensions will have to be changed
3 to match the available space and the solution procedure selected which solves
the equations with the terms in the equations read from files or auxiliary
storage. On the other hand, if relatively small problems are run, the
entire matrix representing the system of equations may be stored in the
core and reduced in a conventional manner for the solution.

The major portion of the calculations performed in the program are
done to solve the system of simultaneous equations which yield the source
distributions on the surface of the airfoils. Equation (11) in the main
body of this report represents the system of equations in matrix form.

To aid in the discussion, Equation (11) is rewritten below:
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A M2 A %1 Vo1 © 7

D -
A1 By - Aon o) Vap T

N1 Awe ANN_J o “Vay ° -:N

or = - (B.1)

(A] [o] = [O]

where [A] Influence coefficient matrix

[o]
(0]

Source distribution matrix (solution matrix)

Onset flow matrix

]

As discussed in the main body of the report, several basic solutions are
required for each problem. Thus, Equation (B.l) must actually be solved
several times. During each step of the solution, the solution matrices
for each basic solution are modified; thus, the several required basic
solutions are essentially obtained simultaneously.

Before discussing the solution techniques, an important difference
should be noted between the A matrix of Equation (B.1) and the matrices of
typical finite element and finite difference methods. The sources applied
to the surface elements of the airfoils in the Douglas Neumann method have
an induced effect on every element. The coefficients in the A matrix in
Equation (B.l) represent this influence; and if there are N elements, there
are N rows in the matrix each with N terms. Typical finite difference and
finite element methods yield matrices with mostly zeros, except near the

diagonal. For the finite difference and finite element methods, only

TV Y T
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the nonzero terms near the diagonal need to be stored and manipulated
for a solution. In comparison, the terms in the A matrix are all nonzero,
and therefore N surface elements result in N2 terms which must be stored
and manipulated for the solution. With N2 terms, it is easy to see that for
a large number of surface elements representing the cascades, storage
problems and long computer solution times may be encountered.

There are curren:ly three methods available to solve the system of
equations in the rewritten version of the Douglas Neumann program. Two
of the methods were in the original Douglas Neumann cascade program and a
third method was developed by ARL which can handle very large problems
and requires less computer time. In the following paragraphs, the three
methods will each be explained and their core storage requirements discussed.
After the three methods are described, an example illustrating the computa-
tion time required by the three methods will be given. The second part
of the appendix then specifically discusses the array dimensions in the
program and how these dimensions and the equation solution procedure can
be changed.

The first method to be discussed for solving the system of
simultaneous equations was in the original Douglas Neumann cascade
program. It is a matrix reduction technique which requires that the
entire A matrix of Equation (B.1l) be stored in an array in the computer
core. For each basic solution required, there is an onset flow matrix
fO0] which must also be in the core if all the basic solutions are to
be obtained with a single reduction of the A matrix. If there are N
elements and Ns basic solutions needed, the total array area required

by this reduction technique is N2 + NS N. With an array area of NZ + N N
s
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required, the reduction technique is usually not practical for problems
with N greater than two hundred. One hundred elements is usually sufficient
to represent one airfoil, thus two cascades can easily be represented by
less than two hundred elements and the equations solved using the matrix
reduction technique.

The idea behind the typical matrix reduction type of simuiianeous
equation solution is to operate on the coefficient matrix and the matrix
on the right hand side of the equation until the coefficient matrix
consists of ones on the diagonal and zeroes everywhere else. When the
coefficient matrix is reduced to this form, the matrix on the right
hand side of the equation is the solution. Since each row of the two
matrices represents an equation, rows can be multiplied by constants and
added or subtracted from each other just as equations are manipulated.

As the coefficient matrix is reduced, the same operations are performed

on the matrix on the right hand side of the equation. However, the values
in the matrix on the right hand side do not effect the reduction of the
coefficient matrix. For this reason, in the Douglas Neumann program all
of the 0 matrices can be operated on during the reduction of the A matrix,
and all the basic solutions are obtained simultaneously.

In a matrix reduction type of solution procedure, it is known to be
good practice to have one of the larger values of the row on the diagonal.
Since the rows are first divided by the value on the diagonal, a zero cannot
be on the diagonal and small values on the diagonal may result in roundoff
errors. In the Douglas Neumann program, rather than first rearranging the
matrix for a strong diagonal, and equivalent procedure is used where the
largest value of the row is used to divide the other values of row and then

eliminate other terms in the same column. The result is a one in each column
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with the remaining values zero. However, since the largest values are not
necessarily on the diagonal, the solution when the reduction is completed
is not in the correct order. The second part of the solution technique
thus consists of rearranging the solution matrix so the values are in the
correct order. One improvement the author of this report feels could be
made would be to use a more efficient method of putting the solution in
its proper order.

The second method available for solving the set of simultaneous equations
was also in the original version of the Douglas Neumann cascade program and
is found in one version of Subroutine PART3. A method was required which
could handle larger problems where the A matrix was too large to be stored
in the core of the computer. In the original Douglas Neumann program an
iterative technique was used which only requires one row of the A matrix to be
in the computer core at one time. A row of the A matrix is read from
auxiliary storage and multiplied by the solution matrix [c] as it currently
appears ([o] is initially zero). If the solution matrix is correct, the
value resulting from the multiplication will equal the corresponding value
in the onset flow matrix. The difference in the two values divided by
A indicates the amount o, should be changed for the current iteration.

II I

The value of 91 is then updated and while a particular row of the A matrix
is in the core the process is repeated for the other basic solutions.

When the calculations are complete for all of the basic solutions, the

next row of the A matrix is read from auxiliary storage and the procedure
is followed until all the rows have been treated. At the end of a complete
iteration the maximum change in any value of o is compared to a convergence
criterion and the iterations continue until the criterion is met. Since

different basic solutions may converge with a different number of iterations,

the iterations only continue for those basic solutions which have not

converged.
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The main disadvantage of the iterative approach is that the A matrix
must be read from auxiliary storage for every iteration. Since reading
files is a much slower process than using values in the computer core,
the computation time for the iterative method can be large.

f For the purpose of reducing computation time for large problems, a

3 third method for solving the set of simultaneous equations was developed L
at ARL during the current rewriting of the Douglas Neumann program. The
third method employs a simple matrix reduction technique; but for large
problems where all the equations cannot fit in the core simultaneously,

it combines the use of auxiliary storage and computer core and operates

on only a partial block of the equations in the core at a given time.
The technique is designed to maximize the use of whatever core space

is available and, thus, the dimension of the array used in the reduction
can Be made whatever size is best for the computer system.

In the third method, given a work space of a certain size, the sub-
routine first sets aside a portion of the array sufficient to hold one
equation. This space is needed for reading the writing data on the files.
With the remaining space, the subroutine determines how many equations

' can fit into the array and reads this number of equations from the file.

The block of equations in the core are then partially reduced, resulting
in ones at the locations representing the diagonal of the complete matrix i

and zeros for all the other values in the columns with ones. This

A o

partial reduction of the equations in the core is illustrated schematically
in Figure B.l where 4 rows of a small 16 x 16 matrix are shown.

l100O0XXXXXXXXXXXX
01 O0O0XXXXXXXXXXXX
y 001 0XXXXXXXXXXXX
OO0OO0O1XXXXXXXXXXXX

Figure B.1 Illustration of How a Block of Equations Represented by
a Portion of a 16 x 16 Matrix is Partially Reduced in
the Core. The X's Represent Nonzero Numbers,
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With the operations on the equations in the core completed, the
remaining equations or rows of the matrix must also have terms eliminated
by the equations in the core. Therefore, the next procedure is to read
one equations at a time from the file, operate on it with each equation
in the core and write the remaining terms on another file. After all
the equations have been operated on by the equations in the block, the
first step of the reduction is complete. After the first step, the example
16 x 16 A matrix would appear as it is shown schematically in Figure B.2.
As with the other reduction technique, the operations performed on the A
matrix are also performed on the onset flow matrices which will represent

the solutions when the reduction is complete.

Rows of the matrix
in the core

Rows of the matrix
? in the file

o O O O O O O 0O OO © ' ©o o+
©C O O O O OO0 0o oo O O O o + o
O O O 0O O O 0O 0 0O 0O O 0O O += O O
O O O O O OO 0O 0O 0O 0O O = O O O
T T - B - - T o T - - B
Eo T - - B - T o T o T o - B -
E - TR T o T - AR R B B
- R T o T o T T - - - - -
Eo T T T o T o - - - B - R
- T T o T T - T R B - B
- - T o T o T T A - - A
- T o TR o T T - - - - - - R
Eo - - B - - o T T T - B
E T - - R - T - -
- T T - A - -
- . T B B R - - -

J

Figure B.2 Schematic of a 16 x 16 Matrix After it has been
Partially Reduced by the First Four Rows of the
Matrix.
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After each complete step, the subroutine reads in the next group of
equations (or rows of the matrix) and repeats the reduction process until
all the equations have been in the reduction block in the core and the matrix
is completely reduced. The method of reducing the matrix by operating on
blocks of equations which are in the core of the computer is expected to
result in a substantial savings in computer time over the iterative method,
if the number of times the equations must be read from file is less for
the reduction method. The number of times the equations must be read
from a file is determined by the number of equations which will fit into
the allotted space in the core. To save time, the subroutine taken advantage
of the fact that it need not operate on or store columns of the matrix which
have already been reduced to ones and zeroes. Thus, as the solution proceeds
and the number of terms in the equations is decreasing, a larger number of
equations will fit into the allotted area, decreasing the required number
of steps. Figure B.3 illustrates the second step of the reduction for
the example 16 x 16 matrix and also demonstrates how the number of equations
which will fit into the core increases as the number of terms decreases.

To better realize the significance of increasing the number of
equations in the core as the number of terms decreases, a more realistic
example will be given. Consider the case where there are 200 equations
each with 200 terms and the alloted array spaée'for solving the equation
is 50 x 50 or 2500. 1Initially 200 spaces are required for reading and
writing data on files, thus only 2300 spaces are available for storing equations
in the core. With 200 terms per equations, 11 equations can be stored in the
core and 11 columns reduced. If the solution technique did not take advantage
of the fact that after each step the number of terms has decreased, it would

require 200 ¢ 11 = 18.2 or 19 steps to reduce the entire matrix. However,

with the number of terms decreased each step, more equations fit into the
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z 1000 00000XXXXXXX
0100 0000O0XXXXXXX Stored in
0010 00000XXXXXXX a file
0001 00O0O0O0XXXXXZXZX
ooo0fi0000XXXXZXXX|
0O000J01000XXXXXXX Segment of the matrix
r 0000J00100XXXXXXZX in the core for the
3 second step of the
g 0000JOO0OO0O10XXXXXXX reduction
: 0000{00001XXXXXEXX|
0000 00OOOO0OXXXXXXEX)
0000 00OO0DO0O0OXXXXXXX
0000 00OO0OO0OO0OXXXXXXX Stored in
0000 0O0OODOOXXXXXZXX r a file
0000 00OO0O0O0XXXXXXX
0000 0O0OOOOXXXXXXX
0000 00000,XXXXZXX xj
columns columns not
not stored ‘
stored after !
after 2nd step
1st
step

Figure B.3 Schematic of the Example 16 x 16 Matrix After
the Second Step of the Reduction. The Brackets
Show the Block of the Matrix Which was in the
Core for the Second Step.

e At bt



|

-111- 26 June 1981
AMY:cag

core and only 10 steps are required. Table B.l depicts the steps required
for this example. Ten steps, meaning ten times the matrix must be read

from files compared to approximately 20 iterations required for the iterative
approach would result in a substantial savings in computer time.

One potential disadvantage of reducing the matrix by blocks of equations
in the core is that the technique does not utilize the concept of first
arranging the matrix for a strong diagonal. In cases run to date, this
has not been found to cause any problems.

Now that the three solution techniques and their core storage require-
ments have been discussed, a comparison of the computation time for each
of the techniques for a sample problem is appropriate. For the analytical
airfoil profile in a linear cascade previously discussed in the section on
check cases, the program was run with the equations solved using each of
the three techniques. The cascade was modeled as two similar cascades to
increase the number of points and to check the multiple cascade solution
procedure. With two cascades each with 99 points describing the airfoils,
there was a total of 196 equations each with 196 terms. Since there were
two cascades with circulation, four basic solutions were required. The
reduction technique with all the equations in the core utilized an array
area 200 x 200. The reduction of the matrix with only a block of equations
in the core was performed using an array area 100 x 100. Constructing a
table similar to Table B.1 would show that the matrix was reduced in
three steps. For the iterative technique, the number of iterations
required by each of the basic solutions is shown in Table B.,2 along with the
computation times required by the three techniques. Results for the
iterative technique for two different convergence criteria are shown in

the table.
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{ Equations in
3 Array Space the Core and Total Number
? Terms per Available for Columns of Columns
y Step Equaticn Equations Reduced Reduced
;
f 1 200 2300 11 11
2 189 2311 12 23
] 3 177 2323 13 36
: 4 164 2336 14 50
E 5 150 2350 15 65
: 6 135 2365 17 82
{ 7 118 2382 20 102
' 8 98 2402 24 126
E 9 74 2426 32 158
- 10 42 2458 58 Maximum 200
42 Needed M
1 F
3
TABLE B.2
A Comparison of the Computation Times Required by the

Three Solution Procedures for a Sample Problem

Reduction | Reduction | Iterative Procedure

with by blocks | Convergence Convergence

complete of equa- Criterion = .01 Criterion = ,001

matrix in tions in Iterations = 21, Iterations = 26,

the core the core | 31, 21, 21 41, 27, 26
CPU Time (sec) 232.55 135.44 A 102.58 123,82
I/0 Time (sec) 21.54 31.03 147.51 189.50 ~
Total Time (sec) 254.09 166.47 250.09 313.32
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It is seen from Table B.2 that the procedure which reduces the matrix
by blocks of equations in the core required the least amount of time of
the three techniques. The reduction in blocks procedure required

) significantly less CPU time than the procedure with the complete matrix

in the core for two reasons: (1) the procedure which reduces the matrix

by blocks does not even consider reduced columns where as the other
technique merely skips zero terms when encountered, (2) The procedure which
reduces the complete matrix in the core must reorder the solution when

the reduction is completed. It is also seen from Table B.2 that the
reduction in blocks technique requires considerably less computer time

than the iterative technique because of its savings in I/0 time.

1/0 (i.e. input/output) time reflects the time spent reading disc

files. The iterative technique must read the complete set of equations
from a file for each iteration; and as shown in the table, for a

convergence criteria of .00l the second basic solution required 41

iterations.

To conclude this section of Appendix B, Table B.3 summarizes the
array storage requirements and the major advantages and disadvantages
of the three solution procedures. With a general understanding of the
three procedures and there storage requirements from this section, the
following section explains specifically the array dimensions and how

they and the solution procedure can be changed.
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TABLE B.3
A Comparison of the Three Solution Procedures
Solution Array Storage Major Major
Procedure Spaces Required Advantages Disadvantages

Reduction with the
complete matrix in
the core

Utilizes strong
diagonal concept

1. Limited to small
problems because of
storage requirements
2. Longer computa-
tion time

Reduction by blocks
of equations in the
core

At least 2N, larger
storage areas will
reduce the compu-
tation time

1. Shorter computa-
tion time

2. Can utilize what-
ever storage space
is available

Does not utilize
strong diagonal
concept

Iterative
Procedure

Small array
storage require-
ments

Longer computation
time

N = number of equations (and number of terms per equation)
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B.2 Changing Array Dimensions and Solution Procedures

i
i
|

It may sometimes be necessary to change the array dimensions to match

the program to a particular computer system or a particular problem.
Changing solution procedures primarily involves making certain the array
dimensions are consistent with the procedure, thus both changing array
dimensions and solution procedures will be discussed in the context of
explaining the arrays in the program. Several segments of the computer
program are presented in figures to aid in the discussion. All the major
arrays used in the program are in common statements, utilizing the same
storage space for all the subroutines and transferring the needed values

from subroutine to subroutine.

Figure B.4 is a listing of the main program of the rewritten version
of the Douglas Neumann program which reveals all the major arrays used.
The COMMON statements BLK2 and BLK3 contain tne arrays which describe
the geometry of the airfoils in the cascades. The variable arrays in
these statements are defined below:

X, Y ~ the coordinates input to the program describing the shape

of the airfoils
XMP, YMP - the coordinates of the midpoints of the surface elements
defined by X, Y
Q - complex body coordinates (X + iY)

SINA, COSA ~ sine and cosine of the angle of the surface elements

Since the arrays in the COMMON statements BLK2 and BLK3 contain
airfoil coordinate data, it is obvious that they must be dimensioned
as large as the number of points used to describe the shape of the airfoils
in the cascades. The current version of the program was intended to

handle up to 10 different cascades each of which can usually be adequately

described with 100 points or less. These numbers (10 x 100) resulted in
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1 COMMON/BLKI /HEDR(20) »THETA
,,,,, 2 . . _ COMMON/BLK2/ Q(1000)+.SINA(1000),COSA(L000) . _
3 COMMAON/BLK3/ X{1000)sY(1000)+XMP(1000)YMP(1000)
C COMMON/BLK2/ Q2(300),SINA(300)+,COSA(300)
. Cc COMMON/BLK3/Z X{300)sY(300)¢XMP(300).YMP(300) ___
4 COMMON/BLKA/ NP(10)cNLE(lO)oSUMDS(lO)oCHORD(lO)vXP(lO)oYP(IO)o
*RPADDX(10) s CCANG(10),ADDY{10)«eNLF(10)
S __COMMON/RLKSY/ FLGO2+FLGO3+FLGOA,FLGOS5+FLGO6sFLGO7sFLGO8,FLGOF,
¥FLG10FLG11,FLGL12
[+ COMMON/RBLKSH/ NBWNT s IMNSOLsRPI sR2PI+SP+CL s ALPHAFALPHA,,DALPHA
el _COMMON/SBLK7/ X0B(S5020),Y0B{(500),NOBP_ ___ . . -
3 COMMON/8BLKS8/ SIG(10004,12)
C COMMON/BLK8/7 SIG(300,12)
29 .. ... __. COMMON/BLK9/7 A(40000) R, e e e
Cc ARRAY A IN COMMON BLOCK 9 IS USED BY SEVERAL OlFFERENT
C SUBROUTINES TO STORE TEMPORARY VARIABLES
19 o _COMPLEX IMeQ e .
11 INTEGER FLGO?-FLGOB FLGO4-FLGOS-FLGO&-FLGO?oFLGOB'FLGO9'
2FLG10,FLG11+FLGL124SUBKS
- X S S U _ _
c PARTI --READS IN DATA. SCALES. RDTATES AND TRANSLATES THE AIRFOILS.
C IT ALSO TRANSFORMS RADIAL FLOwW CASCADES
T e e e e+ o e oo e et e e e
12 10 CALL PART!
13 IF(FLGOBNE.0O) GO TO 30
- C. JESS e e e o e e ottt s e = s e s+ o eee o oo e
C PARTZ--%FTS upP THE MATR!X WHICH 15 SDLVED FOR THE SOURCE
C DISTRIBUTIONS
_______ G e — — N
14 CALL PART2
15 IF(NT.LE.200) GO YO 20
— R - e e e — I
C PART3--SOLVES THE MATRIX BY REDUCING THE EQUATIONS [N BLOCKS
C IF THE NUMBER OF ELEMENTS IS GREATER THAN 200
SN o e e e I e =
15 CALL PART3
17 GG YO 30
L O o e
. c DAPTQ—-SOLVE% THF MATRIX BY REDUCTION !F THE NU“BER OF ELEMENTS
! C IS LESS THAN OR EQUAL TO 200
e e eem e e e e e e e ~ e
13 20 CALL PART 4
Cc
} . C PARPTS--~SOLVES THE COMBINATION EQUATIONS, CALCULATES THE VELOCITIES
: \ Cc AND PRESSURES AND WRITES THE NUTPUT
| C
l 12 .30 CALL F’ARTS___~ e e e e
t 20 GO TO 10
!
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the dimension of 100 seen in Figure B.4. Any number of points can be used
to describe the airfoils of cascades, provided the total does not exceed
the dimensions in COMMON statements BLK2 and BLK3. For many problems,
however, a large number of poiats is not required and the dimensions in

COMMON statements BLK2 and BLK3 can be reduced. Shown as comment statements,

the COMMON statements with the arrays dimensioned 300 are an example of
the dimensions used for several sample runs. This example is carried»
throughout the other COMMON statements and subroutines to illustrate the
changes which must be made to keep all the array dimensions consistent.
COMMON statement BLK4 contains various cascade parameters. Since
the program was intended to handle up to 10 cascades, the variables in
COMMON/BLK4/ are all dimensioned 10. These dimensions could be reduced
for problems with fewer than 10 cascades. However, reducing these |
dimensions would yield an insignificant savings in storage space and it H

is not recommended they be reduced. If it every is desirable to analyze

more than 10 cascades, the dimension of the variables in COMMON/BLK4/ would
have to be increased.

The next major COMMON statement is COMMON/BLK7/, which contains the
coordinates (XOB, YOB) of the off-body calculation points. The off-body

point coordinates are stored in separate arrays from the body points in the

rewritten version of the Douglas Neumann program so that the number of
off-body calculation points can be changed easily without affecting the
number of body points.

The statement COMMON/BLK8/ SIG(1000,12) dimensions the SIG array which
stores the distribution of sources on the surfaces of the airfoils. Each
surface element has a constant value of source strength for each of the

basic solutions required. The first dimension of SIG must therefore be

greater than or equal to the number of surface elements, and the second
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dimension must be greater than or equal to the number of basic solutions. If
there are 10 cascades with circulation to be analyzed, there are 10 + 2 = 12
basic solutions required. SIG is therefore dimensioned (1000, 12) in Figure B.4
which is consistent with the previous dimensions in BLK2, BLK3 and BLK4. 1In the
comment common statement, SIG is dimension (300, 12), to be consistent with
comment COMMON/BLK3/ and COMMON/BLK4/ shown in the figure. The 300 dimension
in BLK3 and the 12 dimension is unchanged since the dimensions in BLK4 are
unchanged. In short, the SIG dimensions can be changed, but they should be
consistent with the dimensions in the other arrays.

The final COMMON storage area is COMMON/BLKY9/. The A array is
COMMON/BLK9/ is used to solve the set of simultaneous equations. In
SUBROUTINE PART5 the same common space is divided among three arrays
which are used to calculate the velocities on the airfoils and reorder the
data. Since COMMON/BLK9/ is dimensioned several different ways in the
various subroutines, care must be taken to make all changes consistent
throughout the program.

The program normally contains two methods of solving the set of
simultaneous equations and selects one method according to the size of
the problem being run. The equations are either solved by reduction of
the complete matrix in an array in SUBROUTINE PART4 and SUBROUTINE MIS1, or
the equations are solved by reduction of blocks of equations or by iterating
in one of the two versions of SUBROUTINE PART3. The program user can inter-
change the two versions of SUBROUTINE PART3 as he chooses. The dimension
of the A array determines the maximum number of equations which can be
solved using the straight matrix reduction. 1In Figure B.4, the A array
is dimensioned 40000 which corresponds to a square matrix 200 x 200. Thus,
with this dimension, up to 200 equations can be solved by reducing the complete
matrix in an array. The statement IF(NT. LE. 200) go to 20 shown in Figure B.4

directs the program to SUBROUTINE PART4 if the number of elements (equations)
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is less than or equal to 200. The number in the IF statement may be
changed to be less than the square root of the A dimension, but it may

not exceed the square root of the A dimensicn.

Figure B.5 shows the beginning segments of subroutines PART4 and

MIS1 and reveals the COMMON statements required by these subroutines.

It should be noted that in SUBROUTINE PART4 the A array is two-dimensional

i
1
|
i
]

and has equal dimensions since it represents a square matrix. Because
of its form in SUBROUTINE PART4, it is clear that the dimension of the
A array in other subroutines must be such that it can be represented as
a square two-dimensional array. It is also shown in Figure B.5 that in
SUBROUTINE MIS1 both the A array in COMMON/BLK9/ and the B array in
COMMON/BLK8/ are one-dimensional while in the calling subroutine (SUBROUTINE
PART4) both arrays are two-dimensional. The parameters ND and ND2 in
SUBROUTINE MIS1 provide MIS1 with the first dimension of A and B in their
two-dimensional form and enable MIS1 to recover values from the one-dimensional
arrays which were stored as values in two-dimensicnal arrays. If the
dimensions of A or B are changed, the parameters ND and ND2 must also
be changed.

COMMON/BLK9/ also appears in the two versions of SUBROUTINE PART3. i
In the version which solves the equations by reducing blocks of equations,
the A arrays siores the equations being reduced. The beginning segment
of this version of SUBROUTINE PART3 is shown in Figure B.6. It is seen
from the figure that the A array is one-dimensional. The parameter
NA shown in Figure B.6 must be given the value of the A array dimension !
in order that the subroutine can calculate the number of equations which
will fit into the array. Thus, if the dimension of A is changed, NA

must also be changed. The same COMMON statements are also used by the

version of SUBROUTINE PART3 which iterates for a solution. No parameters




596

SUBROUTINE PARTA4

26 June 1981
AMY:cag

M=NSOL

Figure B.5 Parts of Subroutines PART4 and MIS1 Showing the

Array Dimensions

C .
o€ 1F_THE_NUMBER OF FLEMENTS IS LESS THAN OR_FQUAL TO _200, THIS _
C SUBRQUTINE SETS UP THE MATRICIES IN ARRAYS WHICH ARE THEN SOLVED
C BY REDUCTION IN SUBROUTINE MIS1
597 COMMON/8LK2/ Q(1000)+SINA(1000)+.COSA(1000)
C COMMDN/R3LK2/ Q(300)sSINA(300)+C0OSA(300)
598 __COMMON/BLKE/ NBsNT o IMoNSCL +RPI3R2PI3SP,CL o ALPHAFALPHAWDALPHA
599 COMMON/RLKS8/ SIG(1000,12)
c COMMON/BLK8/ SIG(300,12)
600 COMMON/BLK9/ A(200+200) . - . .
691 COMPLEX IM.Q
¢
623 SUBRIUTINE MIS1(NsNSOLNERR)
C "THIS SUBRQUTINE REDUCES THE A MATRIX FOR EACH VECTOR IN B
.G THE_FINAL SOLUTIONS ARE_IN 8. ___ S
624 OMMON/BLK8/ 83(12000)
C DMMMON/BLKS/ B(3600)
625 . _COMMON/BLKQ/_ A(40000) __ . ...
C CHANGE ND2 WHEN CHANGING THE DIMENSION OF B
c N32 = (8 DIMENSION)/12
. < ND_= _SQRT(A DIMENSION) __ .
py :
626 NEFR=1
627 . ND=200 e e - e -
628 ND2=1000
623
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456 SUBROUTINE PART3
C
G TEL _THE, NUMB3ER OF EQUATIONS 1S _GREATER _THAN 200, _ -
c THIS SURROUTINE SOLVES THE EQUATIONS BY REDUCTION
C HAVING ONLY A PARTIAL BLOCK OF EQUATIONS IN THE CORE ;
e __C_ ... AT_ONE TIME, THE NUMSBER OF EQUATIONS IN THE_BLOCK_ INCREASES _ _ i
c AS THE NUMBER OF TERMS IS REDUCED, THUS DECREASING THE |
c STEPS RFQUIRED. §
. e e - e e |
457 CAMMON/BLK2/ Q(1000)+SINA(1000),COSA(1000) :
C COMMON/3LK2/ 2(300)+SINA(300),COSA(300)
4538 COMMON/BLKGE/ NBsNT 3 IMgNSOL s RPI yR2P[sSPsCL s ALPHAFALPHADALPHA = __
459 COMMON/3SLKRB/ SIG(1000,12)
C COMMON/BLKS8/ SIG(300.12)
460 . COMMON/BLKS/ AL40000) . ___.._._ - e i
461 COMPLEX IM.Q
462 REWIND 3 _
463 . REWIND. B i e —- -
464 WRITE(64601)
46S 691 TORMAT{'0?,10X,'THE EQUATIONS ARE REDUCED IN 3LOCKS *,
e e X .. __*IN_SUBRQUTINE PART3') __ . —— e et
466 DO 30 I=1,NT
467 SIG(1+1)=SINA(L)
463 . _ ... ._S1G{(1,2)==COSA(I) _ o e e
469 IS(NSOL.LT.3) GO YO 30
479 DO 19 J=3.NSOL
a7t READA3). _SIGC L ad ) o e e e e
472 10 CONTINUE
473 DO 20 J=3,NSOL
ATA . __ _ _SIG(l+3)==SIG(1,J) = L — el
475 20 CONTINUE
4756 30 CONTINUE
e C s . . . . —_ SN
c NEQB = NUMBER OF EQUATIONS IN THE BLOCK. NEQB CHANGES
C AS THE NUMBER OF TERMS IS REDUCED. -
e € NINR = NUMBER OF TERMS_IN _THE EQUATIONS WHICH HAVE NOY__ _
c BEEN REDUCED TO 0 OR 1 :
C NTR = NUMBSR OF TERMS PER EQUATION REDUCED TO 0 OR 1}
(o} MA_= _DIMENSION_QF THFE _A_ARRAY. S
c
c THE LAST SEGMENT COF THE A ARRAY IS USED FOR TEMPORARY
_C STORAGE REQUIRED FOR_READING AND WRITING ON FILE.._ . _ . ___
C IFILE = CODE FOR DETERMINING WHICH FILE 1S READ AND WHICH
C IS WRITTEN ON
e e e e e et e e — . -
ar7 NA=40000
478 IFILE=8
479 ... .. _.NTR=0  _ _ , o o e
4380 40 NTNR= NT-NTR
431 NEQB= (NA-NTNR ) /NTNR
482 IF(NEQB.GT.NT) NEQB=NT_ X L e

Figure B.6 Beginning at SUBROUTINE PART3 Showing the COMMON Statements
and Important Parameters
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need to be changed in the iterative version when array dimensions are
changed.

When the set of simultaneous equations have been solved for the source distri-
butions on the airfoils, the storage space in COMMON/BLKY9/ is free and can be used
for other purposes. This area is therefore used in SUBROUTINE PART5 for calcu-

lating velocities and rearranging the data. The beginning segment of SUBROUTINE

PARTS5 shown in Figure B.7 reveals that the storage space in COMMON/BLK9/ is divided
among three arrays. The space can be divided in any manner among the array, provided
each array has sufficient space to perform its task. The B array is used to

store the coefficients for the influence of the sources of all the elements

on a particular element. The B matrix is very similar to the A matrix of

Equation B.1l except the velocity component calculated from the B matrix is

tangent to the body surface rather than normal to the surface. Only one

row of the complete B matrix needs to be stored in the B array at one time,

thus its dimension can be as small as the total number of surface elements.

As the velocities at the midpoints of the elements are calculated, the values

are stored in the array V. The velocities are calculated for one cascade
and then the results are printed. Therefore, the V array need only store X
the velocities for one cascade at a time and V must be dimensioned at least as
as large as the largest number of elements representing any airfoil in an
analysis. The array TSTOR 1is used to temporarily store the velocities and
element midpoint coordinates for the cases where the data must be reordered

at the end of the computations. TSTOR must also be dimensioned at least

large as the largest number of elements representing any airfoil. For
example, in a multiple cascade analysis with three cascades represented

by 80, 90, and 100 elements, V and TSTOR must both be dimensioned at least

100. For this example B must be dimensioned at least as large as the total
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SUBROUTINE PARTS

JHIS SU3SROUTINE SOLVES THE COMBINATION EQUATIONS AND.
CALCULATES THE VELOCITIES AND PRESSURES.

.COMMON/BLK1/HEDR(20)+THETA _ . e -
COMMON/BLK?2/ Q(1000)4+SINA(1000),COSA(1000)
COMMON/SLK3/ X{(1000)+Y(1000),XMP(1000),YMP(1000)
COMMON/BLK2/ N(300)3SINA(300),COSA(300)
COMMON/BLK3/Z X{(300)+:Y({300),XMP(300),YMP(300)
COMMIN/SBLKA/Z NP(10)+NLE(10),SUMDS{10)+sCHORD{10)+XP(10),.YP(10),
*RPADDX(10) s CCANG(10)+ADDY(10) s NLF(10) .. . e
COMMON/BLKS/ FLGO2¢FLGO3+sFLGO4+FLGOS+FLGOEIFLGOT7+FLGOBFLGO9,
*FLGIDWFLGLI1,FLGL12

COMMON/ZBLK?7/ X08(5003),Y0B8(500) ,NO3P
COMMON/3LKSB/ SIG(1000s12)

COMMON/BLKS/ SIG(300,12) . . .. .. . . -
COMMON/BLKY/ 3(16000),V{(12000)+TSTOR(12000)
COMPLEX IMysQyCSINH:ZOBsTF o W

AFLGI10+FLG1LsFLG12,4,SURBKS
DIMENSION DV3AS(10+12)+sDV(11+11)eDVS(211411)+GAM(11)
DIMENSION COMBS(12)

Figure B.7 Beginning of SUBROUTINE PART5 Showing the
Array Dimensions
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number of elements or 80 + 90 + 100 = 270, Under usual circumstances
COMMON/BLK9/ will contain much more space than actually required by
B, V and TSTOR.

The major arrays in the program have now been discussed and, if it is
necessary, the program user should be able to change the dimensions of

£ the arrays. The user can also change the criterion which directs the

f program to one of the two internal solution procedures or interchange
the two versions of SUBROUTINE PART3, since the primary concern when
making such changes is providing adequate and consistent array storage.
When changing the dimensions of arrays which are used for solving the
set of simultaneous equations, the user must remember to change the

appropriate parameters in the subroutines as discussed in this appendix.
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APPENDIX C

Coordinate Data Input Order and Reordering

The coordinate data describing the shape of the bodies in a cascade
are obviously important input to the Douglas Neumann program. Of great
importance, although for reasons not as obvious, are the starting point
and order of the data. The order of the data is important because the

sine and cosine of the angle of the surface elements are calculated from

the coordinate data. If the coordinate data are not in the correct order,

the sign of the angle according to the chosen convention will be incorrect,
and the boundary condition will not be properly satisfied on the body

surface. For linear cascades and circular cascades with the flow radially
inward, the starting point is also important because it tells the location

of the trailing edge. The location of the trailing edge must be known for the
program to satisfy the Kutta condition.

Concerning the starting point and order of the body coordinate data,
there are three types of cascades which must be given separate considera-
tion. The three types are the linear cascade, the circular cascade with
the radial flow inward, and the circular cascade with the radial flow
outward. To avoid confusion, it is desirably to keep the starting point
and order of the data consistent for all three types of cascades. The
order of the data was chosen to match the original Douglas Neumann program
for a linear cascade. For the circular cascades, the program must reorder
the data so that after the transformation, the starting point and order
correspond to the convention for the linear cascade. In this Appendix,
the coordinate data input for each type of cascade will be described and

the reordering of the data performed by the program will be discussed.
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For all three types of cascades, the coordinate data describing the

shape of a body must be input to the program in terms of a local coordinate
system x'-y'. An example of an airfoil in its local x'-y' coordinate
system is shown in Figure Cl. This airfoil will be used for each type

of cascade to illustrate how the local coordinate system for the airfoil is
related to the cascade coordinate system. As illustrated in Figure Cl,

the coordinate data must start at the trailing edge and progress clockwise
around the airfoil. (Note: For circular cascades, the orientation of

the x'-y' coordinate system with respect to the cascade coordinate system
is the same regardless of whether the flow is radially inward or outward.
Thus, the true leading edge and trailing edge may be reversed from the
orientation shown in Figure Cl. Subsequent figures will clarify this
point.)

Figure C2 shows how the airfoil and its local coordinate system relate
to the cascade coordinate system x-y for the linear type cascade. Although
the local coordinate system of the airfoil can be rotated and translated
within the global system, the cascade must parallel the y axis and the leading
edge of the airfoil must be toward the -x direction. The component of the
flow perpendicular to the cascade 1s from left to right as shown in Figure
C2. Since the cascade solution technique 1s the same for all three types
of cascades, the cascade shown in Figure C2 also represents the orientation
of the cascade, the direction of flow, and the order and starting point
of the data for the radial flow cascades after they are transformed.

The orientation of the local coordinate system for an airfoil in a
circular cascade with the radial flow direction inward is shown in Figure C3-a.
Again the airfoils can be rotated and located at any R-8 position, but the

origin of the x'-y' system must be facing R = =, After the cascade is

transformed to a linear cascade, the orientation of the airfoils, the
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L.E. C‘// "7—-’”:.’)(‘

DIRECTION FOR COORD INATE INPUT,
STARTING AT THE T.E.

Figure C.l. An Airfoil in its Local Coordinate System x'-y', With
the Order for the Data Input Indicated by the Arrows
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DIRECTION OF THE
X COMPONENT
OF FLOW

L.E.

) Z\ E. !
DIRECTION FOR COORDINATE :

INPUT, STARTING AT THE T.E.

W)

Figure C.2. A Linear Cascade Showing the Orientation of Airfoil

Coordinate System With Respect to the Cascade Coordinate
System
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RADIAL FLOW
DIRECTION

/

DIRECTION FOR
COORDINATE

r INPUT
5]
INPUT DATA y!
START ///"V/////
HERE
XI
(a)

(c)

L

DIRECTION OF :;7//'//:;>
DIRECTION OF
CO0RD |NA; S I X< COORDINATE
INPUT
STARTING = “\‘;::\‘ STARTING
| POINT oy PO
ﬁ DIRECTION
- Y OF DATA AFTER
COMPUTER
| b) REVERSES
X X ORDER

Figure C.3. a. Schematic of a Circular Cascade Showing The Orientation of

the Airfoil Coordinate System in the Global System. b. A Schematic

Showing the Cascade Orientation and Coordinate Input Direction
After the Transformation. c.
Order of Coordinate Data

Final Cascade Configuration and
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order of the coordinate data and the VX flow direction are shown schematically
in Figure C3-b. Figure C3-b reveals that the Vx direction does not
correspond to the -x to +x direction required by the cascade solution
procedure. For this reason, an additional transformation step is performed
to change the sign of the x coordinates of the transformed cascade,
resulting in the cascade shown in Figure C3-c. After this step, Figure
C3-c shows that the cascade orientation and Vx flow direction are correct,
but it is seen that the coordinate data as read in do not correspond
to the order choosen for the cascade solution procedure. Rather than
having different input orders for different types of cascades, the
computer program reverses the order of the coordinate data and the
cascade solution proceeds. Following the flow field solution, the order
of the data is again reversed so the output order matches the original
input.

Figure C4-a shows the orientation of the x'-y' system for an airfoil
in the third type of cascade, a circular cascade with the radial flow
outward. The x'-y' orientation, order of the coordinate data, and the

starting point are the same as for a circular cascade with the radial

flow inward. Identical coordinate input for the two types of circular
cascades was choosen for the computer program so that wicket gates and

stay vanes of hydraulic pump-turbines could be analyzed in both modes with

T

the same coordinate data. A code in the input tells the program the direction

of the flow, and for the circular cascade with the radial flow outward

the location of the trailing edge is specified since in this case the data
do not start there.
When the cascade in Figure C4-a is transformed, the resulting linear

cascade is shown schematically in Figure C4-b. It is seen in this figure

that the orientation of the airfoils and the direction of V‘ are correct
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for the cascade analysis. However, the data start at the point which
would be the trailing edge if the flow was radially inward, and the
starting point must be moved to the true trailing edge for the radial

flow outward condition. Again the computer program reorders the data

so that the input can be consistent for each type of cascade. For the
circular cascade with the radial flow outward, the index of the coordinate
pair which give the location of the trailing edge is input to the program,
and this point is made the starting and finishing point. As in the

case when the radial flow is inward, the output is put back into the

original order after the flow field calculations are complete.
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DIRECTION FOR
COORD INATE

r INPUT
0 /
YI
INPUT DATA _
--‘--\__\~‘~ S]¥XRT- ////j://///////

RADIAL FLOW HERE
DIRECTION

Xl

(a)

DIRECTION OF

COORD INATE INPUT
DATA STARTING POINT
IS MOVED TO TRUE T.E.

Vv / BY THE COMPUTER
X . PROGRAM
DIRECTION OF //////

TRANSFORMED
RAD AL FLOW -

INPUT STARTING
POINT

t—‘
X (b)

Figure C.4., a. Schematic of a Circular Cascade with the Radial Flow Direction
Outward. The x'-y' Orientation is the Same as in Figure C.3a.
b. Final Configuration of the Cascade After the Transformation
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